

Abelian varieties in the theta model and applications to cryptography

Candidate: Alessandro Sferlazza Advisors: Benjamin Smith (INRIA Saclay, LIX Ecole Polytechnique, France) Davide Lombardo (UniPi)

> University of Pisa Laurea Magistrale in Matematica

> > 27 September 2024

Achieving secure communication over an insecure channel

Achieving secure communication over an insecure channel

Example Diffie-Hellman key exchange

Goal: A, B establish a shared secret S.

Achieving secure communication over an insecure channel

Example Diffie-Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- ▶ p large prime,
- $G = \langle g \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice Bob
secret
$$x \in \mathbb{Z}/p\mathbb{Z}$$
 public $A = g^x$ $A = B$ public $B = g^y$ public $B = g^y$ public $B = g^y$

Achieving secure communication over an insecure channel

Example Diffie-Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- ▶ p large prime,
- $G = \langle g \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice
Secret
$$x \in \mathbb{Z}/p\mathbb{Z}$$

public $A = g^x$
 $S = B^x = g^{yx}$
 $S = B^x = g^{yx}$
 $S = A^y = g^{xy}$
 Bob
Secret $y \in \mathbb{Z}/p\mathbb{Z}$
public $B = g^y$
 $S = A^y = g^{xy}$

Achieving secure communication over an insecure channel

Example Diffie-Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- ▶ p large prime,
- $G = \langle g \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice
Secret
$$x \in \mathbb{Z}/p\mathbb{Z}$$

public $A = g^x$
 $S = B^x = g^{yx}$
Bob
Secret $y \in \mathbb{Z}/p\mathbb{Z}$
public $B = g^y$
 $S = A^y = g^{xy}$

Hard problem (Discrete Log Problem) given g, g^a , find a. Security Eve recovers a secret key \Leftrightarrow she solves DLP.

Achieving secure communication over an insecure channel

Example Diffie-Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- ▶ p large prime,
- $G = \langle g \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice Bob secret $x \in \mathbb{Z}/p\mathbb{Z}$ public $A = g^x$ $S = B^x = g^{yx}$ $s = B^x = g^{yx}$ $s = B^x = g^{yx}$ $s = B^x = g^{yx}$ $s = B^x = g^{yx}$

 $\frac{\text{Hard problem}}{\text{Security Eve recovers a secret key}} \text{ (Discrete Log Problem) given } g, g^a, \text{ find } a.$

Often G comes from elliptic curves:

- ▶ Defined by $E: Y^2Z = X^3 + aXZ^2 + bZ^3$ with $a, b \in \mathbb{F}_q$
- $\blacktriangleright\ E(\overline{\mathbb{F}}_q)=\{(X:Y:Z)\in \mathbb{P}^2(\overline{\mathbb{F}}_q) \text{ satisfying eq}\}$ abelian group

Achieving secure communication over an insecure channel

Example Diffie-Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- ▶ p large prime,
- $G = \langle g \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice Bob secret $x \in \mathbb{Z}/p\mathbb{Z}$ public $A = g^x$ $S = B^x = g^{yx}$ $S = B^x = g^{yx}$ $S = A^y = g^{xy}$

 $\frac{\text{Hard problem}}{\text{Security Eve recovers a secret key}} \text{ (Discrete Log Problem) given } g, g^a, \text{ find } a.$

Often G comes from elliptic curves:

- \blacktriangleright Defined by $E:Y^2Z=X^3+aXZ^2+bZ^3$ with $a,b\in \mathbb{F}_q$
- $\blacktriangleright \ E(\overline{\mathbb{F}}_q) = \{(X:Y:Z) \in \mathbb{P}^2(\overline{\mathbb{F}}_q) \text{ satisfying eq} \} \text{ abelian group}$
- ▶ If $G \leq E(\mathbb{F}_q)$ has large prime order, DLP is exponentially hard $O(\sqrt{\#G})$.

<u>Premise</u> Elliptic curve cryptography ubiquitous in today's internet. Security \leftrightarrow hardness of order-*p* DLP: fastest algorithms are exponential-time in $\log p$.

<u>Premise</u> Elliptic curve cryptography ubiquitous in today's internet. Security \leftrightarrow hardness of order-p DLP: fastest algorithms are exponential-time in $\log p$.

<u>Problem</u> Shor's quantum algorithm solves DLP in $poly(\log p) \rightsquigarrow ECC$ not quantum-secure. \rightsquigarrow need for post-quantum cryptography.

▷ New paradigms: lattices, error correcting codes, ..., isogenies of elliptic curves.

<u>Premise</u> Elliptic curve cryptography ubiquitous in today's internet.

 $\mathsf{Security} \longleftrightarrow \mathsf{hardness} \text{ of order-} p \; \mathsf{DLP:} \text{ fastest algorithms are exponential-time in } \log p.$

<u>Problem</u> Shor's quantum algorithm solves DLP in $poly(\log p) \rightsquigarrow ECC$ not quantum-secure. \rightsquigarrow need for post-quantum cryptography.

▷ New paradigms: lattices, error correcting codes, ..., isogenies of elliptic curves.

Elliptic curve:

- projective algebraic variety
- abelian group

Premise Elliptic curve cryptography ubiquitous in today's internet.

 $\mathsf{Security} \longleftrightarrow \mathsf{hardness} \text{ of order-} p \; \mathsf{DLP:} \text{ fastest algorithms are exponential-time in } \log p.$

<u>Problem</u> Shor's quantum algorithm solves DLP in $poly(\log p) \rightsquigarrow ECC$ not quantum-secure. \rightsquigarrow need for post-quantum cryptography.

▷ New paradigms: lattices, error correcting codes, ..., isogenies of elliptic curves.

Elliptic curve:

- projective algebraic variety
- abelian group

Isogeny:

morphism of algebraic varieties (defined by rational maps)
 group homomorphism with finite kernel

- Isogeny: "nice" map $E_0 \xrightarrow{\varphi} E_1$:
- defined by rational maps
- group homomorphism with finite kernel

- Isogeny: "nice" map $E_0 \xrightarrow{\varphi} E_1$:
- defined by rational maps
- group homomorphism with finite kernel

 $\underline{\mathsf{Def}} \deg \varphi = x \text{-degree of its rational maps} \overset{\mathsf{when}}{=} \overset{p \nmid \deg \varphi}{=} \# \ker \varphi$

Isogeny: "nice" map $E_0 \xrightarrow{\varphi} E_1$:

- defined by rational maps
- group homomorphism with finite kernel

 $\underline{\mathsf{Def}} \deg \varphi = x \text{-degree of its rational maps} \overset{\mathsf{when}}{=} \overset{p \nmid \deg \varphi}{=} \# \ker \varphi$

Examples $E: Y^2Z = X^3 + aXZ^2 + bZ^3$ defined over \mathbb{F}_q .

Frobenius $\pi_q : E \to E,$ $(X : Y : Z) \mapsto (X^q : Y^q : Z^q)$ $\deg \pi_q = q$ Scalar multiplication $[n]: E \to E,$ $P \mapsto \underbrace{P + P + \dots + P}_{p + p + \dots + P} = nP$ $\deg[n] = n^2$

n times

Isogeny: "nice" map $E_0 \xrightarrow{\varphi} E_1$: defined by rational maps group homomorphism with finite kernel Def deg $\varphi = x$ -degree of its rational maps $\stackrel{\text{when } p \nmid \deg \varphi}{=} \# \ker \varphi$ Examples $E: Y^2Z = X^3 + aXZ^2 + bZ^3$ defined over \mathbb{F}_a . Frobenius $\pi_q \colon E \to E, \qquad (X : Y : Z) \mapsto (X^q : Y^q : Z^q)$ $\deg \pi_a = q$ Scalar multiplication $[n]: E \to E, \qquad P \mapsto P + P + \dots + P = nP \qquad \deg[n] = n^2$ n times Decomposing isogenies Factor deg $\varphi = \prod_{i=1}^{r} \ell_i$ into primes. Isogenies can be factored too: $\varphi = \varphi_1 \circ \ldots \circ \varphi_r$, $\deg \varphi_i = \ell_i$. We can study isogenies of prime degree. $E_0 \xrightarrow{\varphi_1} E^{(1)} \xrightarrow{\varphi_2} E^{(2)} \xrightarrow{\varphi_3} \xrightarrow{\varphi_r} E_1$

<u>Fact</u> If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

<u>Fact</u> If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E_0, E_1 , find a φ connecting them. \longleftrightarrow find a path.

<u>Fact</u> If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E_0, E_1 , find a φ connecting them. \longleftrightarrow find a path. Cryptography Fix E_0 . Consider $\varphi \colon E_0 \to E_1$ Secret key: isogeny path φ . Public key: destination curve E_1 .

<u>Fact</u> If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

 $\begin{array}{l} \mbox{Hard problem} \mbox{ (lsogeny problem) Given isogenous curves } E_0, E_1, \\ \mbox{find a } \varphi \mbox{ connecting them. } \longleftrightarrow \mbox{ find a path.} \\ \mbox{ Cryptography} \mbox{ Fix } E_0. \mbox{ Consider } \varphi \colon E_0 \to E_1 \\ \mbox{ Secret key: isogeny path } \varphi. \mbox{ Public key: destination curve } E_1. \end{array}$

▶ The supersingular isogeny problem is exponentially hard even for quantum computers.

<u>Fact</u> If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E_0, E_1 , find a φ connecting them. \longleftrightarrow find a path. Cryptography Fix E_0 . Consider $\varphi \colon E_0 \to E_1$ Secret key: isogeny path φ . Public key: destination curve E_1 .

- ► The supersingular isogeny problem is exponentially hard even for quantum computers.
- \blacktriangleright Security of isogeny-based protocols \longleftrightarrow hardness of isogeny problem.
- Efficiency \longleftrightarrow fast evaluation of isogenies

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny $\varphi_{sk} \colon E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows φ_{sk} .

$$E_0 \xrightarrow{\varphi_{\rm sk}} E_{\rm pk}$$

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny $\varphi_{sk} \colon E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows φ_{sk} .

$$E_{0} \xrightarrow{\varphi_{sk}} E_{pk}$$

$$\downarrow \qquad \qquad 1. \text{ Alice sends } E_{comm}$$

$$E_{comm}$$

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny $\varphi_{sk}: E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows φ_{sk} .

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny $\varphi_{sk} \colon E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows φ_{sk} .

- 1. Alice sends E_{comm}
- 2. Bob sends φ_{chal}, E_{chal}
- 3. Alice sends φ_{resp}

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny $\varphi_{sk}: E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows φ_{sk} .

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny φ_{sk} : $E_0 \rightarrow E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows φ_{sk} .

Why so slow? Bottleneck: computing isogenies of large prime degree

- We can choose (e.g.) $\deg \varphi_{chal} = 2^e$: decomposable in small 2-isogenies.
- Then $\deg \varphi_{comm}, \deg \varphi_{resp}$ still have large prime factors.

Computing isogenies Consider $\varphi \colon E_0 \to E_1$ with $\deg \varphi = \ell$ prime.

Computing isogenies Consider $\varphi \colon E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo :

- ▶ Input: Generators of ker $\varphi \leq E_0$, possibly other info
- ► Output:
 - \blacktriangleright recover info about the codomain E_1
 - \blacktriangleright evaluate φ on any point $P\in E_0$

Computing isogenies Consider $\varphi \colon E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo :

- ▶ Input: Generators of ker $\varphi \leq E_0$, possibly other info
- ► Output:
 - recover info about the codomain E_1
 - \blacktriangleright evaluate φ on any point $P\in E_0$

<u>Goal</u> Compute an isogeny φ of prime degree ℓ

- ▶ Small ℓ : Vélu's formulas give explicit rational maps from kernel points: $O(\ell)$
- ▶ Large ℓ : faster algo VéluSqrt (2020) runs in $O(\sqrt{\ell})$.

Computing isogenies Consider $\varphi \colon E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo :

- ▶ Input: Generators of ker $\varphi \leq E_0$, possibly other info
- ► Output:
 - recover info about the codomain E_1
 - \blacktriangleright evaluate φ on any point $P\in E_0$

<u>Goal</u> Compute an isogeny φ of prime degree ℓ

- ▶ Small ℓ : Vélu's formulas give explicit rational maps from kernel points: $O(\ell)$
- ▶ Large ℓ : faster algo VéluSqrt (2020) runs in $O(\sqrt{\ell})$.

<u>Problem</u> This is already slow for $\ell \approx$ thousands.

Computing isogenies Consider $\varphi \colon E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo :

- ▶ Input: Generators of ker $\varphi \leq E_0$, possibly other info
- ► Output:
 - recover info about the codomain E_1
 - \blacktriangleright evaluate φ on any point $P\in E_0$

<u>Goal</u> Compute an isogeny φ of prime degree ℓ

- ▶ Small ℓ : Vélu's formulas give explicit rational maps from kernel points: $O(\ell)$
- ▶ Large ℓ : faster algo VéluSqrt (2020) runs in $O(\sqrt{\ell})$.

<u>Problem</u> This is already slow for $\ell \approx$ thousands.

Solution (Castryck–Decru, 2022) Higher-dimensional representation, $O(\log^2 \ell) \leftarrow$ in my thesis

 $\begin{array}{l} \underline{\mathsf{Fact}} \ \varphi \colon E_0 \to E_1, \ \deg \varphi = m. \ \text{There is a unique dual } \widehat{\varphi} \colon E_1 \to E_0, \ \varphi \circ \widehat{\varphi} = [m]. \\ \underline{\mathsf{Fact}} \ \text{Define the } m\text{-torsion } E[m] := \ker([m]). \ \text{If } p \nmid m \ \text{then } E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2. \end{array}$

 $\begin{array}{l} \underline{\mathsf{Fact}} \ \varphi \colon E_0 \to E_1, \ \deg \varphi = m. \ \text{There is a unique dual } \widehat{\varphi} \colon E_1 \to E_0, \ \varphi \circ \widehat{\varphi} = [m]. \\ \underline{\mathsf{Fact}} \ \text{Define the } m\text{-torsion } E[m] := \ker([m]). \ \text{If } p \nmid m \ \text{then } E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2. \end{array}$

Lemma ([Kani, 1997]) Fix $\varphi: E_0 \to E_1$ of degree m. Let N > m, suppose $N - m = a^2$ with gcd(m, a) = 1. The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix}: E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2.

 $\begin{array}{l} \underline{\mathsf{Fact}} \ \varphi \colon E_0 \to E_1, \ \deg \varphi = m. \ \text{There is a unique dual } \widehat{\varphi} \colon E_1 \to E_0, \ \varphi \circ \widehat{\varphi} = [m]. \\ \underline{\mathsf{Fact}} \ \text{Define the } m\text{-torsion } E[m] := \ker([m]). \ \text{If } p \nmid m \ \text{then } E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2. \end{array}$

Lemma ([Kani, 1997]) Fix $\varphi: E_0 \to E_1$ of degree m. Let N > m, suppose $N - m = a^2$ with gcd(m, a) = 1. The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix}: E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2. Proof

- Defined by rational maps √
- \blacktriangleright Homomorphism of abelian groups \checkmark

 $\begin{array}{l} \underline{\mathsf{Fact}} \ \varphi \colon E_0 \to E_1, \ \deg \varphi = m. \ \text{There is a unique dual } \widehat{\varphi} \colon E_1 \to E_0, \ \varphi \circ \widehat{\varphi} = [m]. \\ \underline{\mathsf{Fact}} \ \text{Define the } m\text{-torsion } E[m] := \ker([m]). \ \text{If } p \nmid m \ \text{then } E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2. \end{array}$

Lemma ([Kani, 1997]) Fix $\varphi: E_0 \to E_1$ of degree m. Let N > m, suppose $N - m = a^2$ with gcd(m, a) = 1. The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix}: E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2. Proof

- \blacktriangleright Defined by rational maps \checkmark
- \blacktriangleright Homomorphism of abelian groups \checkmark
- Finite kernel:

Define the *dual*
$$\widehat{\Psi} = \begin{pmatrix} [a] & \widehat{\varphi} \\ -\varphi & [a] \end{pmatrix}$$
. We have $\Psi \circ \widehat{\Psi} = \begin{pmatrix} [a^2+m] & 0 \\ 0 & [a^2+m] \end{pmatrix} = [N]$.
Kani's lemma

<u>Fact</u> $\varphi \colon E_0 \to E_1, \ \deg \varphi = m.$ There is a unique dual $\widehat{\varphi} \colon E_1 \to E_0, \ \varphi \circ \widehat{\varphi} = [m].$ Fact Define the *m*-torsion $E[m] := \ker([m])$. If $p \nmid m$ then $E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$.

Lemma ([Kani, 1997]) Fix $\varphi: E_0 \to E_1$ of degree m. Let N > m, suppose $N - m = a^2$ with gcd(m, a) = 1. The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \wp & [a] \end{pmatrix} : E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2.

- Proof
- ▶ Defined by rational maps √
- \blacktriangleright Homomorphism of abelian groups \checkmark
- Finite kernel:

Define the *dual*
$$\widehat{\Psi} = \begin{pmatrix} [a] & \widehat{\varphi} \\ -\varphi & [a] \end{pmatrix}$$
. We have $\Psi \circ \widehat{\Psi} = \begin{pmatrix} [a^2+m] & 0 \\ 0 & [a^2+m] \end{pmatrix} = [N]$.

 \blacktriangleright We say Ψ has reduced degree N

•
$$\ker \Psi \subseteq \ker([N]) = E_0[N] \times E_1[N]$$
 is finite. \checkmark

Kani's lemma

 $\begin{array}{l} \underline{\mathsf{Fact}} \ \varphi \colon E_0 \to E_1, \ \deg \varphi = m. \ \text{There is a unique dual } \widehat{\varphi} \colon E_1 \to E_0, \ \varphi \circ \widehat{\varphi} = [m]. \\ \underline{\mathsf{Fact}} \ \text{Define the } m\text{-torsion } E[m] := \ker([m]). \ \text{If } p \nmid m \ \text{then } E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2. \end{array}$

Lemma ([Kani, 1997]) Fix $\varphi: E_0 \to E_1$ of degree m. Let N > m, suppose $N - m = a^2$ with gcd(m, a) = 1. The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix}: E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2. Proof

- \blacktriangleright Defined by rational maps \checkmark
- \blacktriangleright Homomorphism of abelian groups \checkmark
- Finite kernel:

Define the *dual*
$$\widehat{\Psi} = \begin{pmatrix} [a] & \widehat{\varphi} \\ -\varphi & [a] \end{pmatrix}$$
. We have $\Psi \circ \widehat{\Psi} = \begin{pmatrix} [a^2+m] & 0 \\ 0 & [a^2+m] \end{pmatrix} = [N]$.

- \blacktriangleright We say Ψ has reduced degree N
- ► ker $\Psi \subseteq$ ker $([N]) = E_0[N] \times E_1[N]$ is finite. \checkmark More precisely, ker $\Psi = \{\widehat{\Psi} \begin{pmatrix} P \\ 0 \end{pmatrix} | P \in E_0[N]\}.$

<u>Goal</u> Computing isogeny $\varphi \colon E_0 \to E_1$ of large prime degree ℓ .

Goal Computing isogeny $\varphi \colon E_0 \to E_1$ of large prime degree ℓ . If we find¹ $N = 2^n = \ell + a^2$ with $\ell \nmid a$, $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix}$ is a 2-dimensional isogeny of reduced degree 2^n (a 2^n -isogeny) $\rightsquigarrow (*, \varphi(Q)) = \Psi(Q, 0)$ for all Q. If we can compute Ψ , we can compute φ

 $^1N - \ell = a^2$ is restrictive. For general $N = 2^n$, we may have to use 4- or 8-dimensional isogenies.

 $\begin{array}{l} \underline{\text{Goal}} \ \text{Computing isogeny } \varphi \colon E_0 \to E_1 \ \text{of large prime degree } \ell. \\ \text{If we find}^1 \ N = 2^n = \ell + a^2 \ \text{with} \ \ell \nmid a, \\ \Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix} \ \text{is a 2-dimensional isogeny of reduced degree } 2^n \ \text{(a } 2^n\text{-isogeny)} \\ \rightsquigarrow \ (*, \varphi(Q)) = \Psi(Q, 0) \ \text{for all } Q. \ \text{If we can compute } \Psi, \ \text{we can compute } \varphi \end{array}$

 $\operatorname{Computing}\,\Psi$

▶ If we know torsion point images $\varphi(P)$ for $P \in E_0[N]$, we know ker $\Psi = \{(aP, -\varphi(P)) \text{ for } P \in E_0[N]\}$

 ${}^{1}N - \ell = a^{2}$ is restrictive. For general $N = 2^{n}$, we may have to use 4- or 8-dimensional isogenies.

Goal Computing isogeny $\varphi \colon E_0 \to E_1$ of large prime degree ℓ . If we find¹ $N = 2^n = \ell + a^2$ with $\ell \nmid a$, $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix}$ is a 2-dimensional isogeny of reduced degree 2^n (a 2^n -isogeny) $\rightsquigarrow (*, \varphi(Q)) = \Psi(Q, 0)$ for all Q. If we can compute Ψ , we can compute φ

Computing Ψ

- If we know torsion point images $\varphi(P)$ for $P \in E_0[N]$, we know ker $\Psi = \{(aP, -\varphi(P)) \text{ for } P \in E_0[N]\}$
- \blacktriangleright Ψ can be decomposed in smaller 2-isogeny pieces, but in dimension 2.

Credits: Wouter Castryck, CAIPI Symposium, Rennes 2024

Intermediate steps: principally polarized abelian surfaces (pprox elliptic curves but 2-dim.)

 ${}^{1}N - \ell = a^{2}$ is restrictive. For general $N = 2^{n}$, we may have to use 4- or 8-dimensional isogenies.

Alessandro Sferlazza (UniPi)

Abelian varieties in the theta mode

Goal Computing isogeny $\varphi \colon E_0 \to E_1$ of large prime degree ℓ . If we find¹ $N = 2^n = \ell + a^2$ with $\ell \nmid a$, $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \\ \varphi & [a] \end{pmatrix}$ is a 2-dimensional isogeny of reduced degree 2^n (a 2^n -isogeny) $\rightsquigarrow (*, \varphi(Q)) = \Psi(Q, 0)$ for all Q. If we can compute Ψ , we can compute φ

Computing Ψ

- If we know torsion point images $\varphi(P)$ for $P \in E_0[N]$, we know ker $\Psi = \{(aP, -\varphi(P)) \text{ for } P \in E_0[N]\}$
- \blacktriangleright Ψ can be decomposed in smaller 2-isogeny pieces, but in dimension 2.

Credits: Wouter Castryck, CAIPI Symposium, Rennes 2024

Intermediate steps: principally polarized abelian surfaces (pprox elliptic curves but 2-dim.)

New goal Computing 2-isogenies of PP abelian surfaces.

• In dim. 1, Vélu's formulas. In dim. 2: can we find explicit formulas from $\ker \Psi$?

 $^{1}N - \ell = a^{2}$ is restrictive. For general $N = 2^{n}$, we may have to use 4- or 8-dimensional isogenies.

Alessandro Sferlazza (UniPi)

Definition Abelian variety: connected projective group variety.

Definition Abelian variety: connected projective group variety.

• projective: there exists an embedding $A \hookrightarrow \mathbb{P}^N$ for some N. Explicitly?

Definition Abelian variety: connected projective group variety.

• projective: there exists an embedding $A \hookrightarrow \mathbb{P}^N$ for some N. Explicitly?

<u>Tool</u> Theta coordinates of level n on a g-dimensional A: n^g coordinates $(\theta_i)_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$, with A[n] in a special position.

Definition Abelian variety: connected projective group variety.

• projective: there exists an embedding $A \hookrightarrow \mathbb{P}^N$ for some N. Explicitly?

Tool Theta coordinates of level n on a g-dimensional A: n^g coordinates $(\theta_i)_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$, with A[n] in a special position. $J: A \hookrightarrow \mathbb{P}^{n^g-1}$ $P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$

Fact If $n \ge 3$, J is injective. If n = 2, embedding of Kummer variety $\mathcal{K}_A = A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}$. $harphi n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Definition Abelian variety: connected projective group variety.

• projective: there exists an embedding $A \hookrightarrow \mathbb{P}^N$ for some N. Explicitly?

Tool Theta coordinates of level n on a g-dimensional A: n^g coordinates $(\theta_i)_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$, with A[n] in a special position. $J: A \hookrightarrow \mathbb{P}^{n^g-1}$ $P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$

Fact If $n \ge 3$, J is injective. If n = 2, embedding of Kummer variety $\mathcal{K}_A = A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}$. $harpoonup n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Examples

 $\blacktriangleright g = 1, n = 3$: elliptic curve as cubic curve in \mathbb{P}^2

Definition Abelian variety: connected projective group variety.

• projective: there exists an embedding $A \hookrightarrow \mathbb{P}^N$ for some N. Explicitly?

<u>Tool</u> Theta coordinates of level n on a g-dimensional A: n^g coordinates $(\theta_i)_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$, with A[n] in a special position. $J: A \hookrightarrow \mathbb{P}^{n^g-1}$ $P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$

Fact If $n \ge 3$, J is injective. If n = 2, embedding of Kummer variety $\mathcal{K}_A = A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}$. $n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Examples

 \blacktriangleright g=1, n=3: elliptic curve as cubic curve in \mathbb{P}^2

•
$$g = 1, n = 2$$
: $E[2] = \{(a:b) = 0_E, (b:a), (a:-b), (-b:a)\}$

Definition Abelian variety: connected projective group variety.

• projective: there exists an embedding $A \hookrightarrow \mathbb{P}^N$ for some N. Explicitly?

 $\begin{array}{c|c} \underline{\text{Tool}} \\ \hline \text{Tool} \\ n^g \text{ coordinates of level } n \text{ on a } g \text{-dimensional } A \text{:} \\ n^g \text{ coordinates } (\theta_i)_{i \in (\mathbb{Z}/n\mathbb{Z})^g}, \text{ with } A[n] \text{ in a special position.} \end{array} \qquad \begin{array}{c|c} J \text{:} & A \hookrightarrow \mathbb{P}^{n^g - 1} \\ & P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g} \\ & P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g} \end{array}$

Fact If $n \ge 3$, J is injective. If n = 2, embedding of Kummer variety $\mathcal{K}_A = A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}$. $harpoonup n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Examples

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

• Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x:y:z:t) \in \mathbb{P}^3$

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

• Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x:y:z:t) \in \mathbb{P}^3$

<u>Point arithmetic</u> A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

• Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x:y:z:t) \in \mathbb{P}^3$

<u>Point arithmetic</u> A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

• Denote $\overline{P} = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.

 \exists algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q} \rightsquigarrow$ differential addition: algorithm

$$\mathsf{diff_add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}$$

Faster than normal point addition!

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

• Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x:y:z:t) \in \mathbb{P}^3$

<u>Point arithmetic</u> A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

► Denote $\overline{P} = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.

 \exists algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q} \rightsquigarrow$ differential addition: algorithm

$$\mathsf{diff}_\mathsf{add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}$$

Faster than normal point addition!

- ▶ Doubling algo: $\overline{2P} = \text{diff}_{-}\text{add}(\overline{P}, \overline{P}, \overline{O_A}).$
- More generally, efficient scalar multiplication \overline{mP} for any $m \in \mathbb{Z}$.

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

• Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x:y:z:t) \in \mathbb{P}^3$

<u>Point arithmetic</u> A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

- ► Denote $\overline{P} = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.
 - \exists algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q} \rightsquigarrow$ differential addition: algorithm

$$\mathsf{diff}_\mathsf{add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}$$

Faster than normal point addition!

- ▶ Doubling algo: $\overline{2P} = \text{diff}_{add}(\overline{P}, \overline{P}, \overline{O_A}).$
- More generally, efficient scalar multiplication \overline{mP} for any $m \in \mathbb{Z}$.

2-isogenies Consider $\Psi: A \to B$ a 2-isogeny (i.e. $\ker \Psi \cong (\mathbb{Z}/2\mathbb{Z})^2$), fix coords $(\theta_i^A)_i$ on \mathcal{K}_A .

• We can choose compatible theta coordinates $(\theta_i^B)_i$ on \mathcal{K}_B .

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

• Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x:y:z:t) \in \mathbb{P}^3$

<u>Point arithmetic</u> A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

- ► Denote $\overline{P} = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.
 - \exists algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q} \rightsquigarrow$ differential addition: algorithm

$$\mathsf{diff}_\mathsf{add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}$$

Faster than normal point addition!

- ▶ Doubling algo: $\overline{2P} = \text{diff}_{add}(\overline{P}, \overline{P}, \overline{O_A}).$
- More generally, efficient scalar multiplication \overline{mP} for any $m \in \mathbb{Z}$.

<u>2-isogenies</u> Consider $\Psi: A \to B$ a 2-isogeny (i.e. $\ker \Psi \cong (\mathbb{Z}/2\mathbb{Z})^2$), fix coords $(\theta_i^A)_i$ on \mathcal{K}_A .

- We can choose compatible theta coordinates $(\theta_i^B)_i$ on \mathcal{K}_B .
- ▶ \exists alg. relations between $(\theta_i^A)_i, (\theta_j^B)_j$. Same techniques as above \rightsquigarrow explicit formulas for Ψ .

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

▶ G_1, G_2 subgroups/quotients of elliptic curves, $G_T \leq k^{\times}$

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- $\blacktriangleright~G_1,G_2$ subgroups/quotients of elliptic curves, $G_T \leq k^{\times}$
- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ G_1, G_2 subgroups/quotients of elliptic curves, $G_T \leq k^{\times}$
- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto

State of the art Algorithm for general pairing computations: Miller, 2004

- Using theta functions: faster algo
- Also applicable to higher-dimensional abelian varieties

Useful for efficiency of isogeny-based cryptography:

▶ Computing isogenies of elliptic curves of large prime degree

Useful for efficiency of isogeny-based cryptography:

Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

Useful for efficiency of isogeny-based cryptography:

Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

We got:

▶ How to represent higher-dimensional abelian varieties (lots of symmetries)

Useful for efficiency of isogeny-based cryptography:

 Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- ▶ How to represent higher-dimensional abelian varieties (lots of symmetries)
- Point arithmetic (addition, doubling, scalar multiplication)

Useful for efficiency of isogeny-based cryptography:

 Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- ▶ How to represent higher-dimensional abelian varieties (lots of symmetries)
- Point arithmetic (addition, doubling, scalar multiplication)
- ▶ 2-isogenies
- General pairing algorithms

Useful for efficiency of isogeny-based cryptography:

 Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- ▶ How to represent higher-dimensional abelian varieties (lots of symmetries)
- Point arithmetic (addition, doubling, scalar multiplication)
- ▶ 2-isogenies
- General pairing algorithms
- Improved performance:

Protocol	signing time (kcycles)	verification time
ML-DSA (std)	333	118
SQIsign	5,669,000	108,000
SQIsign2D	124,000	11,000

Useful for efficiency of isogeny-based cryptography:

 Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- ▶ How to represent higher-dimensional abelian varieties (lots of symmetries)
- Point arithmetic (addition, doubling, scalar multiplication)
- ▶ 2-isogenies
- General pairing algorithms
- Improved performance:

Protocol	signing time (kcycles)	verification time
ML-DSA (std)	333	118
SQIsign	5,669,000	108,000
SQIsign2D	124,000	11,000
Thank you for your attention! Questions?		

References

[Mum66] David Mumford, On the equations defining abelian varieties I, Inventiones mathematicae, vol. 1, pp. 287-354, Springer, 1966

- **[Kan97] Ernst Kani,** *The number of curves of genus two with elliptic differentials,* Journal für die reine und angewandte Mathematik, no. 485, pp. 99-122, 1997
- **[Rob21] Damien Robert**, *Efficient algorithms for abelian varieties and their moduli spaces*, Thesis (Habilitation à Diriger des Recherches), Université de Bordeaux, June 2021.
- **[CD22] Wouter Castryck, Thomas Decru** *An efficient key recovery attack on SIDH*, Advances in Cryptology EUROCRYPT 2023, Springer-Verlag, no. 5, pp. 423-447, first appeared July 2022
 - [DMPR22] Pierrick Dartois, Luciano Maino, Giacomo Pope, Damien Robert An algorithmic approach to (2, 2)-isogenies in the theta model and appli- cations to isogeny-based cryptography, Cryptology ePrint Archive, Paper 2023/1747, 2023
- [BDD+24] Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert, Benjamin Wesolowski, SQIsign2D-West: The Fast, the Small, and the Safer, Cryptology ePrint Archive, Paper 2024/760, 2024

Kani, HD-representation in dim. 4, 8

Let $\varphi \colon E_0 \to E_1$ be an isogeny of degree m. Let $N = 2^n > m$.

▶ Suppose
$$N - m = a^2 + b^2$$
. Define $A_2 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ and $F_{\varphi,2} = \begin{pmatrix} \varphi & \\ & \varphi \end{pmatrix}$.

- Otherwise, write $N - m = a^2 + b^2 + c^2 + d^2$ (we can always do so!) and define

$$A_4 = \begin{pmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{pmatrix}, \qquad F_{\varphi,4} = \begin{pmatrix} \varphi & & & \\ & \varphi & & \\ & & \varphi & \\ & & & \varphi \end{pmatrix}$$

For r = 2, 4, the matrix $\Psi = \begin{pmatrix} A_r & F_{-\widehat{\varphi},r} \\ F_{\varphi,r} & A_r^T \end{pmatrix}$ is an endomorphism of $E_0^r \times E^r$. If $\widehat{\Psi}$ is defined by $(\widehat{\Psi})_{i,j} = \widehat{(\Psi)}_{j,i}$, then $\Psi \circ \widehat{\Psi} = [N] = [2^n]$. Finally, Ψ is a 2^n -isogeny: decompose it in smaller 2-isogenies in dimension r.

General pairing computations

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

General pairing computations

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- ▶ In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of } 1\} \leq k^{\times}$
<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- ▶ In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of } 1\} \leq k^{\times}$
- non-degenerate: $G_2 \cong \operatorname{Hom}(G_1, G_T)$

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- Pairings: ubiquitous tool in curve- and isogeny-based crypto
- ▶ In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell \text{-th roots of } 1\} \leq k^{\times}$
- non-degenerate: $G_2 \cong \operatorname{Hom}(G_1, G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

▶ Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- Pairings: ubiquitous tool in curve- and isogeny-based crypto
- ▶ In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell \text{-th roots of } 1\} \leq k^{\times}$
- non-degenerate: $G_2 \cong \operatorname{Hom}(G_1, G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

▶ Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- ▶ A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing e(P,Q).

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- Pairings: ubiquitous tool in curve- and isogeny-based crypto
- ▶ In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell \text{-th roots of } 1\} \leq k^{\times}$
- non-degenerate: $G_2 \cong \operatorname{Hom}(G_1, G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

▶ Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- ▶ A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing e(P,Q).

This gives:

▶ Efficient algorithm for general elliptic curves, improving Miller

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- Pairings: ubiquitous tool in curve- and isogeny-based crypto
- ▶ In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell \text{-th roots of } 1\} \leq k^{\times}$
- non-degenerate: $G_2 \cong \operatorname{Hom}(G_1, G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

▶ Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- ▶ A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing e(P,Q).

This gives:

- Efficient algorithm for general elliptic curves, improving Miller
 - \rightsquigarrow Good for isogeny-based crypto (many different curves)

<u>Definition</u> Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- Pairings: ubiquitous tool in curve- and isogeny-based crypto
- ▶ In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell \text{-th roots of } 1\} \leq k^{\times}$
- non-degenerate: $G_2 \cong \operatorname{Hom}(G_1, G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

▶ Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- ▶ A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing e(P,Q).

This gives:

- Efficient algorithm for general elliptic curves, improving Miller
 Good for isogeny-based crypto (many different curves)
- Applicable to higher-dimensional abelian varieties