

Abelian varieties in the theta model and applications to cryptography

Candidate: Alessandro Sferlazza Advisors: Benjamin Smith (INRIA Saclay, LIX Ecole Polytechnique, France) Davide Lombardo (UniPi)

> University of Pisa Laurea Magistrale in Matematica

> > 27 September 2024

Achieving secure communication over an insecure channel

Achieving secure communication over an insecure channel

Example Diffie–Hellman key exchange

Goal: A, B establish a shared secret S.

Achieving secure communication over an insecure channel

Example Diffie–Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- \blacktriangleright p large prime,
- \blacktriangleright $G = \langle q \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice	Bob	
secret $x \in \mathbb{Z}/p\mathbb{Z}$	secret $y \in \mathbb{Z}/p\mathbb{Z}$	
public $A = g^x$	2	2
2	2	2
2	2	2
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	
2	2	

Achieving secure communication over an insecure channel

Example Diffie–Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- \blacktriangleright p large prime,
- \blacktriangleright $G = \langle q \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice		
Before	Bob	
secret $x \in \mathbb{Z}/p\mathbb{Z}$	secret $y \in \mathbb{Z}/p\mathbb{Z}$	
public $A = g^x$	As B	public $B = g^y$
$S = B^x = g^{yx}$	Two B	Note

Achieving secure communication over an insecure channel

Example Diffie–Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- \blacktriangleright p large prime,
- \blacktriangleright $G = \langle q \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Hard problem (Discrete Log Problem) given g, g^a , find a. Security Eve recovers a secret key \Leftrightarrow she solves DLP.

Achieving secure communication over an insecure channel

Example Diffie–Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- \blacktriangleright p large prime,
- \blacktriangleright $G = \langle q \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice Bob Eve secret $x \in \mathbb{Z}/p\mathbb{Z}$ public $A = g^x$ $S = B^x = g^{yx}$ secret $y \in \mathbb{Z}/p\mathbb{Z}$ public $B = g^y$ $S = A^y = g^{xy}$ A B

Hard problem (Discrete Log Problem) given g, g^a , find a. Security Eve recovers a secret key \Leftrightarrow she solves DLP.

Often G comes from elliptic curves:

- ▶ Defined by $E: Y^2Z = X^3 + aXZ^2 + bZ^3$ with $a, b \in \mathbb{F}_q$
- $\blacktriangleright \; E(\overline{\mathbb{F}}_q)=\{(X:Y:Z)\in \mathbb{P}^2(\overline{\mathbb{F}}_q) \text{ satisfying eq}\}$ abelian group

Achieving secure communication over an insecure channel

Example Diffie–Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:

- \blacktriangleright p large prime,
- \blacktriangleright $G = \langle q \rangle$ of order p. example: $G \leq \mathbb{F}_q^{\times}$.

Alice Bob Eve secret $x \in \mathbb{Z}/p\mathbb{Z}$ public $A = g^x$ $S = B^x = g^{yx}$ secret $y \in \mathbb{Z}/p\mathbb{Z}$ public $B = g^y$ $S = A^y = g^{xy}$ $A \underset{a \in \mathbb{R}^n}{B}$

Hard problem (Discrete Log Problem) given g, g^a , find a. Security Eve recovers a secret key \Leftrightarrow she solves DLP.

Often G comes from elliptic curves:

- ▶ Defined by $E: Y^2Z = X^3 + aXZ^2 + bZ^3$ with $a, b \in \mathbb{F}_q$
- $\blacktriangleright \; E(\overline{\mathbb{F}}_q)=\{(X:Y:Z)\in \mathbb{P}^2(\overline{\mathbb{F}}_q) \text{ satisfying eq}\}$ abelian group
- ► $E(\mathbb{F}_q) = \{(X : Y : Z) \in \mathbb{F} \text{ and } \mathbb{F}_q\}$ above the group \blacksquare of $G \leq E(\mathbb{F}_q)$ has large prime order, DLP is exponentially hard $O(\sqrt{q})$ $\overline{\#G}).$

Premise Elliptic curve cryptography ubiquitous in today's internet.

Security \longleftrightarrow hardness of order-p DLP: fastest algorithms are exponential-time in $\log p$.

Premise Elliptic curve cryptography ubiquitous in today's internet. Security \longleftrightarrow hardness of order-p DLP: fastest algorithms are exponential-time in $\log p$.

Problem Shor's quantum algorithm solves DLP in poly $(\log p) \rightarrow \text{ECC}$ not quantum-secure. \rightarrow need for post-quantum cryptography.

▷ New paradigms: lattices, error correcting codes, ..., isogenies of elliptic curves.

Premise Elliptic curve cryptography ubiquitous in today's internet.

Security \longleftrightarrow hardness of order-p DLP: fastest algorithms are exponential-time in $\log p$.

Problem Shor's quantum algorithm solves DLP in poly($\log p$) \rightsquigarrow ECC not quantum-secure. \rightarrow need for post-quantum cryptography.

▷ New paradigms: lattices, error correcting codes, ..., isogenies of elliptic curves.

Elliptic curve:

- ▶ projective algebraic variety
- abelian group

Premise Elliptic curve cryptography ubiquitous in today's internet.

Security \longleftrightarrow hardness of order-p DLP: fastest algorithms are exponential-time in $\log p$.

Problem Shor's quantum algorithm solves DLP in poly($\log p$) \rightsquigarrow ECC not quantum-secure. \rightarrow need for post-quantum cryptography.

▷ New paradigms: lattices, error correcting codes, ..., isogenies of elliptic curves.

Elliptic curve:

- projective algebraic variety
- abelian group

Isogeny:

morphism of algebraic varieties (defined by rational maps) group homomorphism with finite kernel

- Isogeny: "nice" map $E_0 \stackrel{\varphi}{\to} E_1$:
- \blacktriangleright defined by rational maps
- **Example 1** group homomorphism with finite kernel (x, y)

- \blacktriangleright defined by rational maps
- **•** group homomorphism with finite kernel (x, y)

Def deg $\varphi = x$ -degree of its rational maps when $p \nmid \deg \varphi$ $\#\ker \varphi$

Isogeny: "nice" map $E_0 \stackrel{\varphi}{\to} E_1$: \blacktriangleright defined by rational maps \rightarrow group homomorphism with finite kernel (x $^{2}+1$ x , $y(x)$ $^{2}+1)$ x^2) φ $\frac{\textsf{Def}}{\textsf{Def}}\deg \varphi = x$ -degree of its rational maps $\overset{\text{when }p \nmid \deg \varphi}{=} \#\ker \varphi$ Examples $E: Y^2Z = X^3 + aXZ^2 + bZ^3$ defined over \mathbb{F}_q . ▶ Frobenius $\pi_q: E \to E$, $(X:Y:Z) \mapsto (X^q:Y^q:Z^q)$ $\deg \pi_q = q$ ▶ Scalar multiplication $[n]: E \to E$, $P \mapsto P + P + \cdots + P = nP$ $\deg[n] = n^2$ \overline{n} times Decomposing isogenies Factor $\deg \varphi = \prod_{i=1}^r \ell_i$ into primes. Isogenies can be factored too: $\varphi = \varphi_1 \circ \ldots \circ \varphi_r, \ \deg \varphi_i = \ell_i.$ \triangleright We can study isogenies of prime degree. $E_0 \xrightarrow{\varphi_1} E^{(1)} \xrightarrow{\varphi_2} E^{(2)} \xrightarrow{\varphi_3} \dots \xrightarrow{\varphi_r}$ $\ldots \stackrel{\varphi_r}{\longrightarrow} E_1$ φ

Fact If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Fact If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E_0, E_1 , find a φ connecting them. \longleftrightarrow find a path.

Fact If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E_0, E_1 , find a φ connecting them. \longleftrightarrow find a path. Cryptography Fix E_0 . Consider $\varphi: E_0 \to E_1$ Secret key: isogeny path φ . Public key: destination curve E_1 .

Fact If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E_0, E_1 , find a φ connecting them. \longleftrightarrow find a path. Cryptography Fix E_0 . Consider $\varphi: E_0 \to E_1$ Secret key: isogeny path φ . Public key: destination curve E_1 .

 \triangleright The supersingular isogeny problem is exponentially hard even for quantum computers.

Fact If $\varphi: E_0 \to E_1$ is an isogeny, then there is $\widehat{\varphi}: E_1 \to E_0$. "Being isogenous" is an equivalence relation. \rightsquigarrow isogeny graphs.

Vertices: elliptic curves (up to \cong) Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E_0, E_1 , find a φ connecting them. \longleftrightarrow find a path. Cryptography Fix E_0 . Consider $\varphi: E_0 \to E_1$ Secret key: isogeny path φ . Public key: destination curve E_1 .

- The supersingular isogeny problem is exponentially hard even for quantum computers.
- \triangleright Security of isogeny-based protocols \longleftrightarrow hardness of isogeny problem.
- \triangleright Efficiency \longleftrightarrow fast evaluation of isogenies

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny φ_{sk} : $E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows $\varphi_{\rm sk}$.

$$
E_0 \dashrightarrow \cdots \dashrightarrow E_{\text{pk}}
$$

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny φ_{sk} : $E_0 \to E_{nk}$, public E_{nk}). Goal Alice proves her identity to Bob, showing she knows $\varphi_{\rm sk}$.

$$
E_0 \longrightarrow_{\text{comm}} \mathcal{E}_{\text{p}k}
$$
\n
$$
\varphi_{\text{comm}} \sim
$$
\n
$$
E_{\text{comm}}
$$
\n
$$
E_{\text{comm}}
$$
\n
$$
E_{\text{comm}}
$$
\n
$$
E_{\text{comm}}
$$

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny φ_{sk} : $E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows $\varphi_{\rm sk}$.

- 1. Alice sends $E_{\rm comm}$
- 2. Bob sends $\varphi_{\rm chal}, E_{\rm chal}$

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny φ_{sk} : $E_0 \to E_{pk}$, public E_{pk}). Goal Alice proves her identity to Bob, showing she knows $\varphi_{\rm sk}$.

- 1. Alice sends E_{comm}
- 2. Bob sends $\varphi_{\text{chal}}, E_{\text{chal}}$
- 3. Alice sends φ_{resp}

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny φ_{sk} : $E_0 \to E_{nk}$, public E_{nk}). Goal Alice proves her identity to Bob, showing she knows $\varphi_{\rm sk}$.

Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E_0 . Alice's keys: (secret isogeny φ_{sk} : $E_0 \to E_{nk}$, public E_{nk}). Goal Alice proves her identity to Bob, showing she knows $\varphi_{\rm sk}$.

Why so slow? Bottleneck: computing isogenies of large prime degree

- ▶ We can choose (e.g.) $\deg \varphi_{\text{chal}} = 2^e$: decomposable in small 2-isogenies.
- \blacktriangleright Then deg φ_{comm} , deg φ_{resp} still have large prime factors.

Computing isogenies Consider $\varphi: E_0 \to E_1$ with $\deg \varphi = \ell$ prime.

Computing isogenies Consider $\varphi: E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo:

- **Input:** Generators of ker $\varphi \leq E_0$, possibly other inform
- ▶ Output:
	- \triangleright recover info about the codomain E_1
	- ► evaluate φ on any point $P \in E_0$

Computing isogenies Consider $\varphi: E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo:

- **Input: Generators of ker** $\varphi \leq E_0$, possibly other inform
- \blacktriangleright Output:
	- \triangleright recover info about the codomain E_1
	- ► evaluate φ on any point $P \in E_0$

Goal Compute an isogeny φ of prime degree ℓ

- ► Small ℓ : Vélu's formulas give explicit rational maps from kernel points: $O(\ell)$
- \blacktriangleright Large ℓ : faster algo VéluSqrt (2020) runs in $O(\sqrt{\ell}).$

Computing isogenies Consider $\varphi: E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo:

- **Input: Generators of ker** $\varphi \leq E_0$, possibly other inform
- \blacktriangleright Output:
	- \triangleright recover info about the codomain E_1
	- ► evaluate φ on any point $P \in E_0$

Goal Compute an isogeny φ of prime degree ℓ

- ► Small ℓ : Vélu's formulas give explicit rational maps from kernel points: $O(\ell)$
- \blacktriangleright Large ℓ : faster algo VéluSqrt (2020) runs in $O(\sqrt{\ell}).$

Problem This is already slow for $\ell \approx$ thousands.

Computing isogenies Consider $\varphi: E_0 \to E_1$ with $\deg \varphi = \ell$ prime. We want an algo:

- **Input: Generators of ker** $\varphi \leq E_0$, possibly other inform
- \blacktriangleright Output:
	- \triangleright recover info about the codomain E_1
	- ► evaluate φ on any point $P \in E_0$

Goal Compute an isogeny φ of prime degree ℓ

- ► Small ℓ : Vélu's formulas give explicit rational maps from kernel points: $O(\ell)$
- \blacktriangleright Large ℓ : faster algo VéluSqrt (2020) runs in $O(\sqrt{\ell}).$

Problem This is already slow for $\ell \approx$ thousands.

<u>Solution</u> (Castryck–Decru, 2022) Higher-dimensional representation, $O(\log^2\ell)\leftarrow$ in my thesis

Fact $\varphi: E_0 \to E_1$, $\deg \varphi = m$. There is a unique dual $\hat{\varphi}: E_1 \to E_0$, $\varphi \circ \hat{\varphi} = [m]$. <u>Fact</u> Define the *m*-torsion $E[m] := \ker([m])$. If $p \nmid m$ then $E[m] ≅ (ℤ/mℤ)^2$.

Fact $\varphi: E_0 \to E_1$, $\deg \varphi = m$. There is a unique dual $\widehat{\varphi}: E_1 \to E_0$, $\varphi \circ \widehat{\varphi} = [m]$. <u>Fact</u> Define the *m*-torsion $E[m] := \ker([m])$. If $p \nmid m$ then $E[m] ≅ (ℤ/mℤ)^2$.

Lemma ([Kani, 1997]) Fix $\varphi\colon E_0\to E_1$ of degree $m.$ Let $N>m,$ suppose $N-m=a^2$ with $\gcd(m,a)=1.$ The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \ \varphi & [a] \end{pmatrix}$ $\left(\begin{array}{c} 0 \end{array} \right): E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2.

Fact $\varphi: E_0 \to E_1$, $\deg \varphi = m$. There is a unique dual $\hat{\varphi}: E_1 \to E_0$, $\varphi \circ \hat{\varphi} = [m]$. <u>Fact</u> Define the *m*-torsion $E[m] := \ker([m])$. If $p \nmid m$ then $E[m] ≅ (ℤ/mℤ)^2$.

Lemma ([Kani, 1997]) Fix $\varphi\colon E_0\to E_1$ of degree $m.$ Let $N>m,$ suppose $N-m=a^2$ with $\gcd(m,a)=1.$ The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \ \varphi & [a] \end{pmatrix}$ $\left(\begin{array}{c} 0 \end{array} \right): E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2. Proof

- ▶ Defined by rational maps ✓
- \blacktriangleright Homomorphism of abelian groups \checkmark

Fact $\varphi: E_0 \to E_1$, $\deg \varphi = m$. There is a unique dual $\hat{\varphi}: E_1 \to E_0$, $\varphi \circ \hat{\varphi} = [m]$. <u>Fact</u> Define the *m*-torsion $E[m] := \ker([m])$. If $p \nmid m$ then $E[m] ≅ (ℤ/mℤ)^2$.

Lemma ([Kani, 1997]) Fix $\varphi\colon E_0\to E_1$ of degree $m.$ Let $N>m,$ suppose $N-m=a^2$ with $\gcd(m,a)=1.$ The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \ \varphi & [a] \end{pmatrix}$ $\left(\begin{array}{c} 0 \end{array} \right): E_0 \times E_1 \to E_0 \times E_1$ is an isogeny in dimension 2. Proof

- ▶ Defined by rational maps ✓
- \blacktriangleright Homomorphism of abelian groups \checkmark
- ▶ Finite kernel:

Define the dual
$$
\widehat{\Psi} = \begin{pmatrix} [a] & \widehat{\varphi} \\ -\varphi & [a] \end{pmatrix}
$$
. We have $\Psi \circ \widehat{\Psi} = \begin{pmatrix} [a^2+m] & 0 \\ 0 & [a^2+m] \end{pmatrix} = [N].$
Kani's lemma

Fact $\varphi: E_0 \to E_1$, $\deg \varphi = m$. There is a unique dual $\hat{\varphi}: E_1 \to E_0$, $\varphi \circ \hat{\varphi} = [m]$. <u>Fact</u> Define the *m*-torsion $E[m] := \ker([m])$. If $p \nmid m$ then $E[m] ≅ (ℤ/mℤ)^2$.

Lemma ([Kani, 1997]) Fix $\varphi\colon E_0\to E_1$ of degree $m.$ Let $N>m,$ suppose $N-m=a^2$ with $\gcd(m,a)=1.$ The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \ \varphi & [a] \end{pmatrix}$ $\bigg): E_0 \times E_1 \rightarrow E_0 \times E_1$ is an isogeny in dimension 2. Proof

- ▶ Defined by rational maps ✓
- \blacktriangleright Homomorphism of abelian groups \checkmark
- ▶ Finite kernel:

Define the dual
$$
\hat{\Psi} = \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix}
$$
. We have $\Psi \circ \hat{\Psi} = \begin{pmatrix} [a^2+m] & 0 \\ 0 & [a^2+m] \end{pmatrix} = [N].$

 \blacktriangleright We say Ψ has reduced degree N

$$
\blacktriangleright \ker \Psi \subseteq \ker([N]) = E_0[N] \times E_1[N] \text{ is finite. } \checkmark
$$

Kani's lemma

Fact $\varphi: E_0 \to E_1$, $\deg \varphi = m$. There is a unique dual $\hat{\varphi}: E_1 \to E_0$, $\varphi \circ \hat{\varphi} = [m]$. <u>Fact</u> Define the *m*-torsion $E[m] := \ker([m])$. If $p \nmid m$ then $E[m] ≅ (ℤ/mℤ)^2$.

Lemma ([Kani, 1997]) Fix $\varphi\colon E_0\to E_1$ of degree $m.$ Let $N>m,$ suppose $N-m=a^2$ with $\gcd(m,a)=1.$ The matrix $\Psi = \begin{pmatrix} [a] & -\widehat{\varphi} \ \varphi & [a] \end{pmatrix}$ $\bigg): E_0 \times E_1 \rightarrow E_0 \times E_1$ is an isogeny in dimension 2. Proof

- ▶ Defined by rational maps ✓
- \blacktriangleright Homomorphism of abelian groups \checkmark
- ▶ Finite kernel:

Define the dual
$$
\hat{\Psi} = \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix}
$$
. We have $\Psi \circ \hat{\Psi} = \begin{pmatrix} [a^2+m] & 0 \\ 0 & [a^2+m] \end{pmatrix} = [N].$

 \blacktriangleright We say Ψ has reduced degree N

► ker
$$
\Psi \subseteq \text{ker}([N]) = E_0[N] \times E_1[N]
$$
 is finite.
 More precisely, ker $\Psi = {\hat{\Psi}(\bigcirc_{0}^{P}) | P \in E_0[N]}$.

Goal Computing isogeny $\varphi: E_0 \to E_1$ of large prime degree ℓ .

Goal Computing isogeny $\varphi: E_0 \to E_1$ of large prime degree ℓ . If we find¹ $N = 2^n = \ell + a^2$ with $\ell \nmid a$, $\Psi=\left(\frac{[a]}{\varphi}\frac{-\widehat{\varphi}}{[a]}\right)$ is a 2 -dimensional isogeny of <code>reduced</code> degree 2^n $\left($ a 2^n -isogeny) \rightarrow $(*, \varphi(Q)) = \Psi(Q, 0)$ for all Q. If we can compute Ψ , we can compute φ

Goal Computing isogeny $\varphi: E_0 \to E_1$ of large prime degree ℓ . If we find¹ $N = 2^n = \ell + a^2$ with $\ell \nmid a$, $\Psi=\left(\frac{[a]}{\varphi}\frac{-\widehat{\varphi}}{[a]}\right)$ is a 2 -dimensional isogeny of <code>reduced</code> degree 2^n $\left($ a 2^n -isogeny) \rightarrow $(*, \varphi(Q)) = \Psi(Q, 0)$ for all Q. If we can compute Ψ , we can compute φ

Computing $\Psi \longrightarrow \mathsf{If}$ we know torsion point images $\varphi(P)$ for $P \in E_0[N]$, we know ker $\Psi = \{(aP, -\varphi(P)) \text{ for } P \in E_0[N]\}$

Goal Computing isogeny $\varphi: E_0 \to E_1$ of large prime degree ℓ . If we find¹ $N = 2^n = \ell + a^2$ with $\ell \nmid a$, $\Psi=\left(\frac{[a]}{\varphi}\frac{-\widehat{\varphi}}{[a]}\right)$ is a 2 -dimensional isogeny of <code>reduced</code> degree 2^n $\left($ a 2^n -isogeny) \rightarrow $(*, \varphi(Q)) = \Psi(Q, 0)$ for all Q. If we can compute Ψ , we can compute φ

- Computing $\Psi \longrightarrow \mathsf{If}$ we know torsion point images $\varphi(P)$ for $P \in E_0[N]$, we know ker $\Psi = \{(aP, -\varphi(P)) \text{ for } P \in E_0[N]\}$
	- $\blacktriangleright \Psi$ can be decomposed in smaller 2-isogeny pieces, but in dimension 2.

Credits: Wouter Castryck, CAIPI Symposium, Rennes 2024

Intermediate steps: principally polarized abelian surfaces (\approx elliptic curves but 2-dim.)

Goal Computing isogeny $\varphi: E_0 \to E_1$ of large prime degree ℓ . If we find¹ $N = 2^n = \ell + a^2$ with $\ell \nmid a$, $\Psi=\left(\frac{[a]}{\varphi}\frac{-\widehat{\varphi}}{[a]}\right)$ is a 2 -dimensional isogeny of <code>reduced</code> degree 2^n $\left($ a 2^n -isogeny) \rightsquigarrow $(*, \varphi(Q)) = \Psi(Q, 0)$ for all Q. If we can compute Ψ , we can compute φ

- Computing $\Psi \longrightarrow \mathsf{If}$ we know torsion point images $\varphi(P)$ for $P \in E_0[N]$, we know ker $\Psi = \{(aP, -\varphi(P)) \text{ for } P \in E_0[N]\}$
	- $\blacktriangleright \Psi$ can be decomposed in smaller 2-isogeny pieces, but in dimension 2.

Credits: Wouter Castryck, CAIPI Symposium, Rennes 2024

New goal Computing 2-isogenies of PP abelian surfaces.

► In dim. 1, Vélu's formulas. In dim. 2: can we find explicit formulas from ker Ψ ?

Definition Abelian variety: connected projective group variety.

Definition Abelian variety: connected projective group variety.

▶ projective: there exists an embedding $A\hookrightarrow\mathbb{P}^N$ for some $N.$ Explicitly?

Definition Abelian variety: connected projective group variety.

▶ projective: there exists an embedding $A\hookrightarrow\mathbb{P}^N$ for some $N.$ Explicitly?

Tool Theta coordinates of level n on a q-dimensional A : n^{g} coordinates $(\theta_{i})_{i\in(\mathbb{Z}/n\mathbb{Z})^{g}},$ with $A[n]$ in a special position.

Definition Abelian variety: connected projective group variety.

▶ projective: there exists an embedding $A\hookrightarrow\mathbb{P}^N$ for some $N.$ Explicitly?

 $\overline{\text{Iool}}$ Theta coordinates of level n on a g -dimensional A : n^{g} coordinates $(\theta_{i})_{i\in(\mathbb{Z}/n\mathbb{Z})^{g}},$ with $A[n]$ in a special position. $J: A \hookrightarrow \mathbb{P}^{n^g-1}$ $P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$

<u>Fact</u> If $n\geq 3$, J is injective. If $n=2$, embedding of Kummer variety $\mathcal{K}_{A}=A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}.$ \blacktriangleright $n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Definition Abelian variety: connected projective group variety.

▶ projective: there exists an embedding $A\hookrightarrow\mathbb{P}^N$ for some $N.$ Explicitly?

 $\overline{\text{Iool}}$ Theta coordinates of level n on a g -dimensional A : n^{g} coordinates $(\theta_{i})_{i\in(\mathbb{Z}/n\mathbb{Z})^{g}},$ with $A[n]$ in a special position. $J: A \hookrightarrow \mathbb{P}^{n^g-1}$ $P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$

<u>Fact</u> If $n\geq 3$, J is injective. If $n=2$, embedding of Kummer variety $\mathcal{K}_{A}=A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}.$ \blacktriangleright $n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Examples

 $\overline{\bullet}\ \overline{\rule[0.04cm]{0.04cm}{0.04cm}}\ = 1, n = 3$: elliptic curve as cubic curve in \mathbb{P}^2

Definition Abelian variety: connected projective group variety.

▶ projective: there exists an embedding $A\hookrightarrow\mathbb{P}^N$ for some $N.$ Explicitly?

 $\overline{\text{Iool}}$ Theta coordinates of level n on a g -dimensional A : n^{g} coordinates $(\theta_{i})_{i\in(\mathbb{Z}/n\mathbb{Z})^{g}},$ with $A[n]$ in a special position. $J: A \hookrightarrow \mathbb{P}^{n^g-1}$ $P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$

<u>Fact</u> If $n\geq 3$, J is injective. If $n=2$, embedding of Kummer variety $\mathcal{K}_{A}=A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}.$ \blacktriangleright $n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Examples

 $\overline{\bullet}\ \overline{\rule[0.04cm]{0.04cm}{0.04cm}}\ = 1, n = 3$: elliptic curve as cubic curve in \mathbb{P}^2

$$
\blacktriangleright \ g = 1, n = 2; \ E[2] = \{(a:b) = 0_E, (b:a), (a:-b), (-b:a)\}
$$

Definition Abelian variety: connected projective group variety.

▶ projective: there exists an embedding $A\hookrightarrow\mathbb{P}^N$ for some $N.$ Explicitly?

<u>Tool</u> Theta coordinates of level n on a g -dimensional A : n^{g} coordinates $(\theta_{i})_{i\in(\mathbb{Z}/n\mathbb{Z})^{g}},$ with $A[n]$ in a special position. $J: A \hookrightarrow \mathbb{P}^{n^g-1}$ $P \mapsto (\theta_i(P))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$

<u>Fact</u> If $n\geq 3$, J is injective. If $n=2$, embedding of Kummer variety $\mathcal{K}_{A}=A/\pm 1 \hookrightarrow \mathbb{P}^{n^g-1}.$ \blacktriangleright $n = 2 \rightsquigarrow$ fewer coordinates \rightsquigarrow efficiency!

Examples

\n- $$
g = 1, n = 3
$$
: elliptic curve as cubic curve in \mathbb{P}^2
\n- ▶ $g = 1, n = 2$: $E[2] = \{(a:b) = 0_E, (b:a), (a:-b), (-b:a)\}$
\n- ▶ $g = 2, n = 2$: quartic Kummer surface \mathcal{K}_A in \mathbb{P}^3 .
\n- $A[2] = \{(a:b:c:d), (a:-b:c:-d), (a:b:-c:-d), (a:-b:-c:d), (b:a:d:c), (b:-a:d:-c), (b:a:-d:-c), (b:-a:-d:c), (c:d:a:b), (c:-d:a:-b), (c:d:-a:-b), (c:-d:-a:b), (d:c:b:a), (d:-c:b:-a), (d:c:-b:-a), (d:-c:-b:a)\}$
\n

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

▶ Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x : y : z : t) \in \mathbb{P}^3$

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

▶ Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x : y : z : t) \in \mathbb{P}^3$

Point arithmetic A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

▶ Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x : y : z : t) \in \mathbb{P}^3$

Point arithmetic A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

▶ Denote $P = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.

∃ algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q}$ \rightsquigarrow differential addition: algorithm

$$
\mathsf{diff}_\mathsf{add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}
$$

Faster than normal point addition!

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

▶ Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x : y : z : t) \in \mathbb{P}^3$

Point arithmetic A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

▶ Denote $P = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.

∃ algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q} \rightsquigarrow$ differential addition: algorithm

$$
\mathsf{diff}_\mathsf{add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}
$$

Faster than normal point addition!

- \triangleright Doubling algo: $2\overline{P}$ = diff add($\overline{P}, \overline{P}, \overline{0_A}$).
- More generally, efficient scalar multiplication \overline{mP} for any $m \in \mathbb{Z}$.

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

▶ Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x : y : z : t) \in \mathbb{P}^3$

Point arithmetic A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

▶ Denote $P = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.

 \exists algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q} \rightsquigarrow$ differential addition: algorithm

$$
\mathsf{diff}_\mathsf{add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}
$$

Faster than normal point addition!

- \triangleright Doubling algo: $2\overline{P} = \text{diff}\,\text{add}(\overline{P}, \overline{P}, \overline{0_A}).$
- ▶ More generally, efficient scalar multiplication \overline{mP} for any $m \in \mathbb{Z}$.

<u>2-isogenies</u> Consider $\Psi\colon A\to B$ a 2-isogeny (i.e. $\ker\Psi\cong (\Z/2\Z)^2)$, fix coords $(\theta_i^A)_i$ on \mathcal{K}_A .

 \blacktriangleright We can choose compatible theta coordinates $(\theta^B_i)_i$ on $\mathcal{K}_B.$

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:

▶ Kummer variety \mathcal{K}_A : represent $(\pm P \in A) \mapsto (x : y : z : t) \in \mathbb{P}^3$

Point arithmetic A is an algebraic group, but $\mathcal{K}_A = A/\pm 1$ is not. However:

▶ Denote $P = (x_P : y_P : z_P : t_P) = (\theta_i(P))_{i \in (\mathbb{Z}/2\mathbb{Z})^2}$.

∃ algebraic relations involving $\overline{P}, \overline{Q}, \overline{P+Q}, \overline{P-Q} \rightsquigarrow$ differential addition: algorithm

$$
\mathsf{diff}_\mathsf{add}(\overline{P},\overline{Q},\overline{P-Q})=\overline{P+Q}
$$

Faster than normal point addition!

- \triangleright Doubling algo: $2\overline{P} = \text{diff}\,\text{add}(\overline{P}, \overline{P}, \overline{0_A}).$
- ▶ More generally, efficient scalar multiplication \overline{mP} for any $m \in \mathbb{Z}$.

<u>2-isogenies</u> Consider $\Psi\colon A\to B$ a 2-isogeny (i.e. $\ker\Psi\cong (\Z/2\Z)^2)$, fix coords $(\theta_i^A)_i$ on \mathcal{K}_A .

- \blacktriangleright We can choose compatible theta coordinates $(\theta^B_i)_i$ on $\mathcal{K}_B.$
- ► \exists alg. relations between $(\theta_i^A)_i, (\theta_j^B)_j.$ Same techniques as above \leadsto explicit formulas for $\Psi.$

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

 \blacktriangleright G_1, G_2 subgroups/quotients of elliptic curves, $G_T \leq k^\times$

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- \blacktriangleright G_1, G_2 subgroups/quotients of elliptic curves, $G_T \leq k^\times$
- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- \blacktriangleright G_1, G_2 subgroups/quotients of elliptic curves, $G_T \leq k^\times$
- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto

State of the art Algorithm for general pairing computations: Miller, 2004

- \triangleright Using theta functions: faster algo
- \triangleright Also applicable to higher-dimensional abelian varieties

Useful for efficiency of isogeny-based cryptography:

▶ Computing isogenies of elliptic curves of large prime degree

Useful for efficiency of isogeny-based cryptography:

 \triangleright Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

Useful for efficiency of isogeny-based cryptography:

 \triangleright Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

We got:

 \triangleright How to represent higher-dimensional abelian varieties (lots of symmetries)

Useful for efficiency of isogeny-based cryptography:

 \triangleright Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- \triangleright How to represent higher-dimensional abelian varieties (lots of symmetries)
- \triangleright Point arithmetic (addition, doubling, scalar multiplication)

Useful for efficiency of isogeny-based cryptography:

▶ Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- \triangleright How to represent higher-dimensional abelian varieties (lots of symmetries)
- ▶ Point arithmetic (addition, doubling, scalar multiplication)
- \blacktriangleright 2-isogenies
- \blacktriangleright General pairing algorithms

Useful for efficiency of isogeny-based cryptography:

▶ Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- \triangleright How to represent higher-dimensional abelian varieties (lots of symmetries)
- \triangleright Point arithmetic (addition, doubling, scalar multiplication)
- \blacktriangleright 2-isogenies
- \blacktriangleright General pairing algorithms
- ▶ Improved performance:

Useful for efficiency of isogeny-based cryptography:

 \triangleright Computing isogenies of elliptic curves of large prime degree reduced to Computing isogenies of reduced degree 2, but in higher dimensions

- \triangleright How to represent higher-dimensional abelian varieties (lots of symmetries)
- ▶ Point arithmetic (addition, doubling, scalar multiplication)
- \blacktriangleright 2-isogenies
- \blacktriangleright General pairing algorithms
- **Improved performance:**

References

[Mum66] David Mumford, On the equations defining abelian varieties I, Inventiones mathematicae, vol. 1, pp. 287-354, Springer, 1966

- Ħ [Kan97] Ernst Kani, The number of curves of genus two with elliptic differentials, Journal für die reine und angewandte Mathematik, no. 485, pp. 99-122, 1997
- Ħ [Rob21] Damien Robert, *Efficient algorithms for abelian varieties and their moduli spaces*, Thesis (Habilitation à Diriger des Recherches), Université de Bordeaux, June 2021.
- F [CD22] Wouter Castryck, Thomas Decru An efficient key recovery attack on SIDH, Advances in Cryptology -EUROCRYPT 2023, Springer-Verlag, no. 5, pp. 423-447, first appeared July 2022
- FI [DMPR22] Pierrick Dartois, Luciano Maino, Giacomo Pope, Damien Robert An algorithmic approach to $(2, 2)$ -isogenies in the theta model and appli- cations to isogeny-based cryptography, Cryptology ePrint Archive, Paper 2023/1747, 2023
- F [BDD+24] Andrea Basso, Luca De Feo, Pierrick Dartois, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert, Benjamin Wesolowski, SQIsign2D-West: The Fast, the Small, and the Safer, Cryptology ePrint Archive, Paper 2024/760, 2024

Kani, HD-representation in dim. 4, 8

Let $\varphi: E_0 \to E_1$ be an isogeny of degree m. Let $N = 2^n > m$.

$$
\text{ Suppose } N - m = a^2 + b^2. \text{ Define } A_2 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ and } F_{\varphi,2} = \begin{pmatrix} \varphi & \\ & \varphi \end{pmatrix}.
$$

▶ Otherwise, write $N-m=a^2+b^2+c^2+d^2$ (we can always do so!) and define

$$
A_4 = \begin{pmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{pmatrix}, \qquad F_{\varphi,4} = \begin{pmatrix} \varphi \\ & \varphi \\ & & \varphi \end{pmatrix}
$$

For $r=2,4$, the matrix $\Psi=\left(\begin{array}{cc} A_r & F_{-\widehat{\varphi},r} \ - & \pi \end{array} \right)$ $F_{\varphi,r}$ A_r^T \setminus is an endomorphism of $E_0^r\times E^r.$ If $\widehat{\Psi}$ is defined by $(\widehat{\Psi})_{i,j} = \widehat{(\Psi)_{j,i}},$ then $\Psi \circ \widehat{\Psi} = [N] = [2^n].$ Finally, Ψ is a 2^n -isogeny: decompose it in smaller 2-isogenies in dimension r .

General pairing computations

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

General pairing computations

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- \blacktriangleright In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of }1\} \leq k^\times$
Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- \blacktriangleright In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of }1\} \leq k^\times$
- ▶ non-degenerate: $G_2 \cong \text{Hom}(G_1,G_T)$

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- \blacktriangleright In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of }1\} \leq k^\times$
- ▶ non-degenerate: $G_2 \cong \text{Hom}(G_1,G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

 \triangleright Vast literature on optimized pairings, only for specific pairing-friendly curves E/\mathbb{F}_p

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- \blacktriangleright In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of }1\} \leq k^\times$
- ▶ non-degenerate: $G_2 \cong \text{Hom}(G_1,G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

 \triangleright Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- ▶ Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing $e(P,Q)$.

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- \blacktriangleright In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of }1\} \leq k^\times$
- ▶ non-degenerate: $G_2 \cong \text{Hom}(G_1,G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

 \triangleright Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- ▶ Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing $e(P, Q)$.

This gives:

 \triangleright Efficient algorithm for general elliptic curves, improving Miller

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- \blacktriangleright In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of }1\} \leq k^\times$
- ▶ non-degenerate: $G_2 \cong \text{Hom}(G_1,G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

 \triangleright Vast literature on optimized pairings, only for specific pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- ▶ Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing $e(P,Q)$.

This gives:

- \triangleright Efficient algorithm for general elliptic curves, improving Miller
	- \rightarrow Good for isogeny-based crypto (many different curves)

Definition Pairing: non-degenerate bilinear map $e: G_1 \times G_2 \rightarrow G_T$.

- ▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto
- \blacktriangleright In this case: $G_1, G_2 \leq E$ ell curve, $\#G_i = \ell$, and $G_T = \mu_\ell = \{\ell\text{-th roots of }1\} \leq k^\times$
- ▶ non-degenerate: $G_2 \cong \text{Hom}(G_1,G_T)$

State of the art Algorithm for general pairing computations: Miller, 2004

 \triangleright Vast literature on optimized pairings, only for *specific* pairing-friendly curves E/\mathbb{F}_p

Theta pairings Using theta functions on E, take as input $(\overline{0_E}, \overline{P}, \overline{Q}, \overline{P+Q})$:

- ▶ Compute $\overline{mP}, \overline{mP+Q}$ using theta point arithmetic
- A ratio of the coordinates of $\overline{mP}, \overline{mP+Q}$ gives the pairing $e(P,Q)$.

This gives:

- \triangleright Efficient algorithm for general elliptic curves, improving Miller \rightarrow Good for isogeny-based crypto (many different curves)
- \triangleright Applicable to higher-dimensional abelian varieties