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Context: public key cryptography
Achieving secure communication over an insecure channel

Example Diffie–Hellman key exchange

Goal: A, B establish a shared secret S.

Parameters:
▶ p large prime,

▶ G = ⟨g⟩ of order p.
example: G ≤ F×

q .

Alice Bob

Eve

messages

S S

secret x ∈ Z/pZ
public A = gx

S = Bx = gyx

secret y ∈ Z/pZ
public B = gy

S = Ay = gxy

A B

Hard problem (Discrete Log Problem) given g, ga, find a.
Security Eve recovers a secret key ⇔ she solves DLP.

Often G comes from elliptic curves:
▶ Defined by E : Y 2Z = X3 + aXZ2 + bZ3 with a, b ∈ Fq

▶ E(Fq) = {(X : Y : Z) ∈ P2(Fq) satisfying eq} abelian group

▶ If G ≤ E(Fq) has large prime order, DLP is exponentially hard O(
√
#G).

P Q

P +Q
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Isogeny-based cryptography

Premise Elliptic curve cryptography ubiquitous in today’s internet.
Security ←→ hardness of order-p DLP: fastest algorithms are exponential-time in log p.

Problem Shor’s quantum algorithm solves DLP in poly(log p) ⇝ ECC not quantum-secure.
⇝ need for post-quantum cryptography.
▷ New paradigms: lattices, error correcting codes, ..., isogenies of elliptic curves.

P

Q = [a]P

Elliptic curve:
▶ projective algebraic variety

▶ abelian group

φ

Isogeny:
▶ morphism of algebraic varieties (defined by rational maps)

▶ group homomorphism with finite kernel
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Isogenies: definitions and examples

Isogeny: “nice” map E0
φ−→ E1:

▶ defined by rational maps

▶ group homomorphism with finite kernel (x, y)

(x
2+1
x

,
y(x2+1)

x2 )

φ

Def degφ = x-degree of its rational maps
when p ∤degφ

= #kerφ

Examples E : Y 2Z = X3 + aXZ2 + bZ3 defined over Fq.

▶ Frobenius πq : E → E, (X : Y : Z) 7→ (Xq : Y q : Zq) deg πq = q
▶ Scalar multiplication [n] : E → E, P 7→ P + P + · · ·+ P︸ ︷︷ ︸

n times

= nP deg[n] = n2

Decomposing isogenies Factor degφ =
∏r

i=1 ℓi into primes.
Isogenies can be factored too: φ = φ1 ◦ . . . ◦ φr, degφi = ℓi.
▶ We can study isogenies of prime degree.

E0 E(1) E(2) . . . E1
φ1 φ2 φ3 φr

φ
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A hard problem with isogenies
Fact If φ : E0 → E1 is an isogeny, then there is φ̂ : E1 → E0.
“Being isogenous” is an equivalence relation. ⇝ isogeny graphs.

E0

E1

Vertices: elliptic curves (up to ∼=)
Edges: isogenies of fixed prime degree

Hard problem (Isogeny problem) Given isogenous curves E0, E1,
find a φ connecting them. ←→ find a path.
Cryptography Fix E0. Consider φ : E0 → E1

Secret key: isogeny path φ. Public key: destination curve E1.

▶ The supersingular isogeny problem is exponentially hard even for quantum computers.

▶ Security of isogeny-based protocols ←→ hardness of isogeny problem.

▶ Efficiency ←→ fast evaluation of isogenies

Alessandro Sferlazza (UniPi) Abelian varieties in the theta model 27 September 2024 4 / 12
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SQIsign identification scheme
Basis of SQIsign signature: isogeny-based candidate for post-quantum standardization

Setup Public parameter E0. Alice’s keys: (secret isogeny φsk : E0 → Epk, public Epk).
Goal Alice proves her identity to Bob, showing she knows φsk.

E0 Epk
φsk

Ecomm

φcomm

Echal

φchal

φresp

1. Alice sends Ecomm

2. Bob sends φchal, Echal

3. Alice sends φresp

Performance
vs current PQ standards

Protocol signature size (B) signing time (kcycles)

ML-DSA (std) 2420 333
SQIsign 177 5,669,000

Why so slow? Bottleneck: computing isogenies of large prime degree
▶ We can choose (e.g.) degφchal = 2e: decomposable in small 2-isogenies.

▶ Then degφcomm,degφresp still have large prime factors.
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How to represent an isogeny?

Computing isogenies Consider φ : E0 → E1 with degφ = ℓ prime.

We want an algo :
▶ Input: Generators of kerφ ≤ E0, possibly other info

▶ Output:

▶ recover info about the codomain E1

▶ evaluate φ on any point P ∈ E0

Goal Compute an isogeny φ of prime degree ℓ
▶ Small ℓ: Vélu’s formulas give explicit rational maps from kernel points: O(ℓ)

▶ Large ℓ: faster algo VéluSqrt (2020) runs in O(
√
ℓ).

Problem This is already slow for ℓ ≈ thousands.

Solution (Castryck–Decru, 2022) Higher-dimensional representation, O(log2 ℓ) ← in my thesis
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Kani’s lemma

Fact φ : E0 → E1, degφ = m. There is a unique dual φ̂ : E1 → E0, φ ◦ φ̂ = [m].
Fact Define the m-torsion E[m] := ker([m]). If p ∤ m then E[m] ∼= (Z/mZ)2.

Lemma ([Kani, 1997])
Fix φ : E0 → E1 of degree m. Let N > m, suppose N −m = a2 with gcd(m, a) = 1.

The matrix Ψ =

(
[a] −φ̂
φ [a]

)
: E0 × E1 → E0 × E1 is an isogeny in dimension 2.

Proof
▶ Defined by rational maps ✓
▶ Homomorphism of abelian groups ✓
▶ Finite kernel:

Define the dual Ψ̂ =
(

[a] φ̂
−φ [a]

)
. We have Ψ ◦ Ψ̂ =

(
[a2+m] 0

0 [a2+m]

)
= [N ].

▶ We say Ψ has reduced degree N

▶ kerΨ ⊆ ker([N ]) = E0[N ]× E1[N ] is finite. ✓
More precisely, kerΨ = {Ψ̂

(
P
0

)
| P ∈ E0[N ]}.
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Higher-dimensional (HD) representation

Goal Computing isogeny φ : E0 → E1 of large prime degree ℓ.

If we find1 N = 2n = ℓ+ a2 with ℓ ∤ a,
Ψ =

(
[a] −φ̂
φ [a]

)
is a 2-dimensional isogeny of reduced degree 2n (a 2n-isogeny)

⇝ (∗, φ(Q)) = Ψ(Q, 0) for all Q. If we can compute Ψ, we can compute φ

Computing Ψ ▶ If we know torsion point images φ(P ) for P ∈ E0[N ],
we know kerΨ = {(aP,−φ(P )) for P ∈ E0[N ]}

▶ Ψ can be decomposed in smaller 2-isogeny pieces, but in dimension 2.

Credits: Wouter Castryck,
CAIPI Symposium,
Rennes 2024

Intermediate steps: principally polarized abelian surfaces (≈ elliptic curves but 2-dim.)

New goal Computing 2-isogenies of PP abelian surfaces.
▶ In dim. 1, Vélu’s formulas. In dim. 2: can we find explicit formulas from kerΨ?

1N − ℓ = a2 is restrictive. For general N = 2n, we may have to use 4- or 8-dimensional isogenies.
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How to represent principally polarized abelian varieties?

Definition Abelian variety: connected projective group variety.

▶ projective: there exists an embedding A ↪→ PN for some N . Explicitly?

Tool Theta coordinates of level n on a g-dimensional A:
ng coordinates (θi)i∈(Z/nZ)g , with A[n] in a special position.

J : A ↪→ Png−1

P 7→ (θi(P ))i∈(Z/nZ)g

Fact If n ≥ 3, J is injective. If n = 2, embedding of Kummer variety KA = A/±1 ↪→ Png−1.
▶ n = 2 ⇝ fewer coordinates ⇝ efficiency!

Examples
▶ g = 1, n = 3: elliptic curve as cubic curve in P2

▶ g = 1, n = 2: E[2] = {(a : b) = 0E , (b : a), (a : −b), (−b : a)}
▶ g = 2, n = 2: quartic Kummer surface KA in P3.

A[2] = {(a : b : c : d), (a : −b : c : −d), (a : b : −c : −d), (a : −b : −c : d),
(b : a : d : c), (b : −a : d : −c), (b : a : −d : −c), (b : −a : −d : c),
(c : d : a : b), (c : −d : a : −b), (c : d : −a : −b), (c : −d : −a : b),
(d : c : b : a), (d : −c : b : −a), (d : c : −b : −a), (d : −c : −b : a)}
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Algorithms on Kummer surfaces

Representation Let A be a 2-dim. abelian variety, level-2 theta coordinates:
▶ Kummer variety KA: represent (±P ∈ A) 7→ (x : y : z : t) ∈ P3

Point arithmetic A is an algebraic group, but KA = A/±1 is not. However:
▶ Denote P = (xP : yP : zP : tP ) = (θi(P ))i∈(Z/2Z)2 .

∃ algebraic relations involving P ,Q, P +Q,P −Q ⇝ differential addition: algorithm

diff add(P ,Q, P −Q) = P +Q

Faster than normal point addition!

▶ Doubling algo: 2P = diff add(P , P , 0A).

▶ More generally, efficient scalar multiplication mP for any m ∈ Z.

2-isogenies Consider Ψ: A→ B a 2-isogeny (i.e. kerΨ ∼= (Z/2Z)2), fix coords (θAi )i on KA.

▶ We can choose compatible theta coordinates (θBi )i on KB.

▶ ∃ alg. relations between (θAi )i, (θ
B
j )j . Same techniques as above ⇝ explicit formulas for Ψ.
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Bonus: general pairing computations

Definition Pairing: non-degenerate bilinear map e : G1 ×G2 → GT .

▶ G1, G2 subgroups/quotients of elliptic curves, GT ≤ k×

▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto

State of the art Algorithm for general pairing computations: Miller, 2004
▶ Using theta functions: faster algo

▶ Also applicable to higher-dimensional abelian varieties
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Conclusions

Useful for efficiency of isogeny-based cryptography:
▶ Computing isogenies of elliptic curves of large prime degree

reduced to Computing isogenies of reduced degree 2, but in higher dimensions

We got:
▶ How to represent higher-dimensional abelian varieties (lots of symmetries)

▶ Point arithmetic (addition, doubling, scalar multiplication)

▶ 2-isogenies

▶ General pairing algorithms

▶ Improved performance:
Protocol signing time (kcycles) verification time

ML-DSA (std) 333 118
SQIsign 5,669,000 108,000
SQIsign2D 124,000 11,000

Thank you for your attention! Questions?
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Kani, HD-representation in dim. 4, 8

Let φ : E0 → E1 be an isogeny of degree m.
Let N = 2n > m.

▶ Suppose N −m = a2 + b2. Define A2 =

(
a −b
b a

)
and Fφ,2 =

(
φ

φ

)
.

▶ Otherwise, write N −m = a2 + b2 + c2 + d2 (we can always do so!) and define

A4 =


a −b −c −d
b a d −c
c −d a b
d c −b a

 , Fφ,4 =


φ

φ
φ

φ



For r = 2, 4, the matrix Ψ =

(
Ar F−φ̂,r

Fφ,r AT
r

)
is an endomorphism of Er

0 × Er.

If Ψ̂ is defined by (Ψ̂)i,j = (̂Ψ)j,i, then Ψ ◦ Ψ̂ = [N ] = [2n].

Finally, Ψ is a 2n-isogeny: decompose it in smaller 2-isogenies in dimension r.



General pairing computations

Definition Pairing: non-degenerate bilinear map e : G1 ×G2 → GT .

▶ Pairings: ubiquitous tool in curve- and isogeny-based crypto

▶ In this case: G1, G2 ≤ E ell curve, #Gi = ℓ, and GT = µℓ = {ℓ-th roots of 1} ≤ k×

▶ non-degenerate: G2
∼= Hom(G1, GT )

State of the art Algorithm for general pairing computations: Miller, 2004
▶ Vast literature on optimized pairings, only for specific pairing-friendly curves E/Fp

Theta pairings Using theta functions on E, take as input (0E , P ,Q, P +Q):

▶ Compute mP,mP +Q using theta point arithmetic

▶ A ratio of the coordinates of mP,mP +Q gives the pairing e(P,Q).

This gives:
▶ Efficient algorithm for general elliptic curves, improving Miller

⇝ Good for isogeny-based crypto (many different curves)

▶ Applicable to higher-dimensional abelian varieties
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