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Abstract

Isogenies of principally polarised abelian varieties have been used in recent years to build
cryptographic protocols that are secure against quantum computers. Though abelian varieties
are classical objects in algebraic geometry, from a computational perspective they present some
challenges that have been addressed only recently.

An algorithmic framework to work with abelian varieties of any dimension is provided
by theta models. These are projective realisations of polarised abelian varieties defined by
algebraic theta functions.

This thesis presents an introduction to the arithmetic of principally polarised abelian vari-
eties via the theory of theta models. It concerns itself with the computation of the group law
on abelian varieties and the differential addition law on their Kummer varieties, pointing out
the link with the corresponding existing elliptic curve algorithms.

Then, the thesis presents some recent algorithms to efficiently compute chains of (2, . . . , 2)-
isogenies between Kummer surfaces, and the Tate andWeil pairings on general abelian varieties,
including elliptic curves and hyperelliptic Jacobians. The theoretical framework needed for
pairing computation also involves the algebraic theory of biextensions. Original contributions
include implementations of some of the algorithms presented.

Finally, as a cryptographic application, the recent isogeny-based digital signature scheme
SQIsign2D-West is studied, with a focus on the applicability of the higher-dimensional isogeny
algorithms to signature verification in small devices.
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Introduction

Secure communication in internet traffic is paramount in today’s digital world, and
public-key cryptography is at the heart of it. Protocols for key agreement, digital
signatures, encryption guarantee secrecy, authenticity and integrity for the data sent
over the internet.

Elliptic Curve Cryptography (ECC) is a form of public-key cryptography that lever-
ages the mathematical properties of elliptic curves over finite fields. Introduced in 1985
by Victor Miller [Mil85] and Neal Koblitz [Kob87] independently, it is now ubiquitous
on the internet: in 2021, almost all handshakes and 25% of the certificates used by the
top million websites were ECC-based [Lab21]. Its advantage consists in providing high
levels of security with significantly smaller key sizes compared to traditional methods
like RSA [RSA78] (still the top-used signature algorithm; its keys are 10 times larger
than ECC ones at the same security level), finite-field Diffie–Hellman [DH76]. Smaller
keys mean less bandwidth and often faster computations, which is particularly impor-
tant in environments with constrained resources, e.g. mobile devices, smart cards, IoT
devices.

Security and efficiency in ECC are rooted on a broad understanding of computa-
tional problems in number theory, mathematically interesting per se, from point count-
ing to pairings to endomorphism rings. The search for fast pairings – one of the main
algorithmic tools in ECC – has led to a whole new branch of pairing-based cryptogra-
phy, bringing advanced functionalities like three-party Diffie–Hellman key agreement
[Jou00] and identity-based encryption [BF01], without prior analogues outside of ECC.

The security of ECC relies on the Elliptic Curve Discrete Logarithm Problem
(ECDLP): given a point P of large prime order on a curve E and a multiple Q = kP
for some integer k, find k. It is really hard to solve on classical computers: the fastest
known algorithms don’t do better than the theoretical upper bound on their complex-
ity, O(

√
#E), exponential in the bitsize of the input.

Despite its advantages, ECC is not considered secure in the context of quantum
computing. Shor’s quantum algorithm [Sho94] poses a significant threat to ECC by
potentially solving the ECDLP in polynomial time, thus undermining the security of
systems that rely on it.

This vulnerability has sparked interest in the development of post-quantum cryp-
tographic protocols, which are algorithms on classical computers designed to be secure
against attacks by quantum computers. Ideally, such algorithms should be drop-in
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replacements for current pre-quantum ones in our security protocols, so as to assure a
smooth transition to a quantum-safe world. The American National Institute of Stan-
dards and Technology (NIST) has launched in 2016 a competition [NIS16] to identify
and standardise post-quantum algorithms, with the first generation of standards just
released in August 2024. Research for the next generations is active and ongoing.

One promising area of research in this direction is isogeny-based cryptography, a
new cryptographic paradigm based on isogenies of elliptic curves. It appeared in the
early 2000s [Tes06], [CLG09], [RS06], [Cou06], based on some earlier works on isogeny
graphs (e.g., [Koh96]). Its security relies on the hardness of the isogeny problem: given
two elliptic curves E,E′ over Fq satisfying #E(Fq) = #E′(Fq), Tate’s theorem says
there is an Fq-isogeny connecting them; the task is finding it explicitly.

The isogeny problem is hard to solve on classical computers, like ECDLP, but no
efficient quantum algorithm is known either. Like ECC, isogeny-based crypto stands
out due to its ability to provide strong security with significantly smaller key sizes – two
orders of magnitude smaller than most of other post-quantum protocols [PQS]. On the
other hand, isogeny-based cryptosystems are generally considerably slower than other
post-quantum paradigms, and improving their performance is an important challenge.

In the past few years, isogeny-based cryptography has underwent a major break-
through with the attacks [CD23], [MM22], [Rob23a] on the key-exchange protocol SIDH
[JD11], former NIST competition candidate. These attacks have shown that isogenies
between higher-dimensional abelian varieties allow the efficient computation of any
isogeny between two elliptic curves in polynomial time, overcoming the exponential
complexity of the best previously known algorithms.

Abelian varieties are smooth projective algebraic groups. While the theoretical
foundations of these objects in algebraic geometry are classical and well understood,
their practical implementation poses significant challenges. Research to generalise ECC
to higher dimensions or higher-genus hyperelliptic curves is not new (see [CFA+12]
for a survey). When it comes to isogenies instead, the understanding of the relative
computational problems is still in its early days, which is the motivation behind this
thesis. A powerful framework to study these problems is the theory of algebraic theta
functions, developed by Mumford [Mum66] and adapted to the cryptographic world
by more recent works (most of whose results are collected in [Rob21]). This theory
allows for the design of efficient arithmetic algorithms on principally polarised abelian
varieties (PPAVs) – of any dimension – over finite fields. Therefore, it is crucial in
bridging the gap between theory and practice and generalising the well-studied case of
elliptic curves (the PPAVs of dimension 1) to higher dimensions.

The aim of this thesis is to give an overview of the computational problems on
PPAVs and how they can be solved efficiently using the theory of theta functions.
More precisely, given a g-dimensional PPAV A over a finite field k, the thesis will
present how to:

� explicitly represent A as a projective variety;

� find algorithms linked to the group law of A. We’ll see differential addition, which
takes points P,Q, P−Q ∈ A and outputs the sum P+Q, multiplication of a point
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P by integer scalars, and more general operations called Riemann relations;

� compute the Weil and Tate pairings on A;

� compute isogenies: given A and a subgroup K, compute an isogeny φ having K
as a kernel, that is, compute its codomain and evaluate φ at points of A. This
is nontrivial when φ has high degree [LR12]. We’ll focus on the easiest case, the
(2, . . . , 2)-isogenies, whereK is isomorphic to (Z/2Z)g, which turns out to be very
useful in applications – in particular, it makes the aforementioned breakthroughs
possible.

We will also see how to do the above only working with the Kummer variety A/ ⟨−1⟩,
whose points are points of A “up to sign”.

The thesis is organised as follows: Chapter 1 provides an overview of some algo-
rithmic aspects of elliptic curves, serving as motivation and comparison for the next
chapters. Chapter 2 is an introduction to abelian varieties and the theory of algebraic
theta functions, giving the necessary algebraic-geometric definitions and defining the
systems of coordinates we’re going to use to represent our varieties. Chapter 3 presents
arithmetic algorithms: the group-law-related ones and isogeny computations. Chap-
ter 4 presents algorithms for the computation of the Weil and Tate pairings, combining
theta functions with the theory of biextensions of abelian varieties and cubic torsors
[Bre83]. These algorithms work efficiently for general primes and varieties, while most
optimised pairing computations today are only possible on elliptic curves with tailored
parameters. Finally, Chapter 5 presents the SIDH attacks and applies the study of
theta functions to the isogeny-based digital signature scheme SQIsign [DKL+20], cur-
rently a NIST candidate in a call for post-quantum signature schemes. In particular,
the signature verification step is studied, aiming at improving its size-efficiency for a
use in memory-constrained devices.

Algorithms in Chapter 3 and 4 mostly come from the recent works [DMPR23a],
[Rob24a]. Using the code attached to these two works, we provide Sagemath im-
plementations of biextension-based pairings on hyperelliptic Jacobians, available at
https://github.com/sferl/theta-pairings-dim2, and analyse memory-efficiency
of the available algorithms for (2n, . . . , 2n)-isogeny evaluations.
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Chapter 1

Preliminaries: Elliptic curves and
Montgomery arithmetic

Elliptic curves are a fundamental object in number theory and algebraic geometry,
and have found numerous applications in cryptography [CFA+12]. In this chapter,
we will present some algorithmic aspects of elliptic curve arithmetic. We’ll work with
the Montgomery model, particularly well-suited to efficiently represent elliptic curves,
their Kummer lines, their points and their group law on a computer, leading to effi-
cient algorithms at the core of many cryptographic protocols. We will highlight some
properties of the Montgomery model that will motivate the study of theta models in
Chapter 2.

1.1 First definitions

Although we are going to recall the basic definitions and properties on elliptic curves
and their arithmetic, a little familiarity with the subject is certainly helpful. The reader
interested in a thorough theoretical introduction to the subject can refer to [Sil09]. A
more algorithmic approach to elliptic curves, with an explicit focus on cryptographic
applications, can be found instead in [Was08].

We will also assume some familiarity with algebraic geometry, in particular no-
tions on algebraic varieties. The reader interested in a more detailed introduction to
algebraic geometry can refer to any of the standard textbooks, such as [Liu02], [Vak24].

In this first chapter, for the sake of concreteness, we will define elliptic curves not
as abstract objects, but as cubic plane curves embedded in the projective plane P2 via
some coordinate system, and describe their arithmetic in terms of these coordinates.
We will see in Chapter 2, when introducing higher-dimensional abelian varieties, that
a more abstract definition can be given, and allows for greater generalisation.

Notation 1.1. Let’s first introduce some notational conventions that we will use
throughout the thesis:

� By Fq we will denote the finite field with q = pr elements, with p = char(Fq).

1
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� By k we always denote a finite field Fq of characteristic p, where p ̸= 2, 3 is a
large prime number. In the applications, typically p is several hundred bits large,
that is, log2(p) ≈ 128, 256, 512.

� We will denote the algebraic closure of a field k by kalg.

Definition 1.2. An elliptic curve E over a field k (we will write E/k) is a smooth
projective algebraic curve defined by the following homogeneous equation in P2(k):

(1.1) E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

with a1, . . . , a6 ∈ k. We write E/k to say that “E is defined over k”.

Definition 1.3. For any algebraic field extension F with k ⊆ F ⊆ kalg, we can define
the set of F -rational points of E as

E(F ) = {(X : Y : Z) ∈ P2(F ) | (X,Y, Z) satisfies (1.1)}.

In particular, the kalg-rational points E(kalg) are also called the geometric points of E.
There is a distinguished point 0E = (0 : 1 : 0) ∈ E(k) that always belongs to the curve,
and is called the point at infinity.

Notation 1.4. In the sequel, we will often write P ∈ E to mean that P is a geometric
point in E(kalg). For such points P = (XP : YP : ZP ), we write x(P ) = XP /ZP and
y(P ) = YP /ZP . These are coordinates on an affine chart where the line Z = 0 is sent
to infinity, and they are well-defined rational functions in kalg(E).

Definition 1.5 (Change of coordinates). Let A ∈ PGL2(k
alg) be a linear change

of coordinates in the ambient space P2 such that A(0 : 1 : 0) = (0 : 1 : 0). The
transformation (X ′ : Y ′ : Z ′) = A(X : Y : Z) maps the equation E to a different cubic
homogeneous equation E′(X ′ : Y ′ : Z ′) with the same point at infinity. We say that
E′ is a different equation for the same curve, or that E and E′ are isomorphic curves.
If A is defined over k, we say E and E′ to be isomorphic over k.

Definition 1.6 (Short Weierstrass model). Keeping the notation of the previous def-
inition, consider the following linear change of coordinates on P2:

X ′ = X +
a2
3
, Y ′ = Y +

a1
2
X ′ +

a3
2
, Z ′ = Z,

which makes sense since char(k) ̸= 2, 3. Applying this to (1.1), the equation becomes

(1.2) E : Y ′2Z ′ = X ′3 + aX ′Z ′2 + bZ ′3

for some a, b ∈ k that satisfy ∆(E) = 4a3 + 27b2 ̸= 0.
This is called a short Weierstrass model of the elliptic curve E.

Definition 1.7. Let E/k be defined by an equation of the form (1.2). The quantity

j(E) = 1728 · 4a3

4a4+27b2
∈ k is called the j-invariant of the elliptic curve E, and is an

isomorphism invariant. More generally, for any elliptic curve E defined over k, we can
define its j-invariant as j(EW ) for any short Weierstrass model EW ∼= E (since it is
isomorphism invariant, it doesn’t depend on the choice of EW ).
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The Group law

One fundamental fact about elliptic curves is that they are abelian varieties, that is,
any elliptic curve E possesses a commutative group law that makes its geometric points
into an abelian group. This group law has a geometric description, sketched below.

Throughout the paragraph, we consider an elliptic curve defined by an equation

(1.3) E : BY 2Z = F (X,Z),

for some B ∈ k, where F ∈ k[X,Z] is a homogeneous degree-3 polynomial with no
repeated factors. The short Weierstrass model is a particular case of this form, but we
will see that other types of equations, like the Montgomery model, also fit within this
framework.

Lemma 1.8. The following map

[−1] : E(kalg)→ E(kalg), P = (XP : YP : ZP ) 7→ −P = (XP : −YP : ZP )

defines an involution (an order-2 automorphism) of the curve, and leaves the point at
infinity 0E = (0 : 1 : 0) invariant.
The line through P and −P is the vertical line X = x(P ) ·Z, whose third intersection
point with E is 0E.

Definition 1.9. We call [−1] the negation map on E.

The group law of an elliptic curve is defined geometrically as follows:

Proposition 1.10. Let P = (XP : YP : ZP ) and Q = (XQ : YQ : ZQ) be two points in
E, such that P ̸= −Q. Let LP,Q be the line through P and Q in P2. If P = Q, let LP,Q
be the tangent line to E in P . This line will have three points of intersection with E:
let R = (XR : YR : ZR) be the third. Then we can define P +Q = −R (see also Figure
1.1). The map

+: E × E → E, (P,Q) 7→ P +Q,

also called as the chord-tangent law, is a commutative algebraic group law on E(kalg),
with identity element the point at infinity 0E. It is defined over the base field k. In
particular, if P,Q ∈ E(k) are k-rational, then P +Q ∈ E(k) is too.

Proof. Explicit formulas for the group law can be found in [Sil09, III, Group Law
Algorithm 2.3], and show associativity.

Commutativity of the group law comes from the construction, since LP,Q = LQ,P .
The group law is defined over k because the coefficients of LP,Q are rational func-

tions of the coordinates of P and Q and the coefficients of E. The slope λ of LP,Q equals
the sum of the x-coordinates of P,Q,R, so if P,Q are k-rational then x(P +Q) = x(R)
also is, and y(P +Q) = −y(R) depends linearly on x(R) and the coefficients of LP,Q.

For the point at infinity, note that given P ∈ E the vertical line through P intersects
E at {P, 0E ,−P}, which means P + 0E = −(−P ) = P .
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P

Q
R

P +Q

Figure 1.1: Group law on an elliptic curve (depicted over R)

Using the group law, it is possible to define scalar multiplication:

Definition 1.11. Let n ∈ Z be an integer and P ∈ E(kalg) a point. The multiplication-
by-n map is defined as

[n] : E(kalg)→ E(kalg), P 7→ [n]P =


0E if n = 0,

P + [n− 1]P if n > 0,

−[−n]P if n < 0.

Definition 1.12. Let E/k be an elliptic curve. The n-torsion subgroup of E is the set

E[n] = {P ∈ E(kalg) | [n]P = 0E}

and its points are called n-torsion points.

Proposition 1.13. If n is an integer not divisible by p, the n-torsion subgroup E[n]
is a finite abelian subgroup of E(kalg) isomorphic to Z/nZ× Z/nZ.
If n = p, then E[p] is either isomorphic to Z/pZ or trivial. In the latter case, we say
that E is supersingular.

Proof. See [Sil09, III, Corollary 6.4].

Example 1.14. Let f(X) = F (X, 1) = (X − α1)(X − α2)(X − α3) where F defines
the curve equation as in (1.3). The tangent line to E in T = (αi : 0 : 1) is the vertical
line X = αiZ, and its third point of intersection with E is 0E = (0 : 1 : 0). Thus
T + T = 0, that is, T is a 2-torsion point. Indeed, since #E[2] = 4, this is all the
2-torsion:

E[2] = {0E , T1 = (α1 : 0 : 1), T2 = (α2 : 0 : 1), T3 = (α3 : 0 : 1)}.
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The Montgomery model

We’re interested in developing algorithms to express the group law on elliptic curves
in a way that is efficient to compute. While the short Weierstrass model is quite
convenient for theoretical purposes, it is not the most efficient model for computation.
Instead, we can work with the Montgomery model, again a special case of (1.3), first
introduced in [Mon87]. For more details on Montgomery arithmetic, see [CS17].

Definition 1.15. A Montgomery curve over a field k is an elliptic curve E defined by
an equation of the form

EA,B : BY 2Z = X3 +AX2Z +XZ2

with A ∈ k \ {±2}, B ∈ k \ {0}.
For a Montgomery curve EA,B, its j-invariant equals j(EA,B) = 256 · (A

2−3)3

A2−4
.

Remark 1.16. Any elliptic curve in Montgomery form can be transformed into a short
Weierstrass model via a linear change of coordinates defined over k, but the converse
is not true: if EW is a curve in Weierstrass form, there is always a kalg-isomorphism
from EW to some EA,B in Montgomery form, but this isomorphism isn’t k-rational in
general. In fact, a Montgomery curve has some special structure over the base field k.

Indeed, a Montgomery curve EA,B always has a rational 2-torsion point. Note that
α1 = 0 is always a root of the polynomial F (X, 1) = X3 + AX2 + X. Example 1.14
shows that T0 = (0 : 0 : 1) ∈ EA,B(k) is a point of order 2.

Remark 1.17 (Additional structure of EA,B(k)). One can in fact show more: the curve
EA,B has either a k-rational point of order 4, or two independent points of order 2
(that is, full k-rational 2-torsion). See [CS17, Section 2.3] for a proof.

The formulae for the group law on a Montgomery curve are quite simple (cf. the
formulae for the short Weierstrass model in [Sil09]):

Proposition 1.18 (Explicit group law). Let P = (xP : yP : 1) and Q = (xQ : yQ : 1)
be two points on EA,B with P ̸= −Q. Then P +Q = (x+ : y+ : 1) where

x+ = Bλ2 −A− xP − xQ, y+ = λ(xP − xQ)− yP

with λ =

{ yP−yQ
xP−xQ if P ̸= ±Q,
3x2P+2AxP+1

2ByP
if P = Q.

Though quite simple, the Montgomery group law is not as efficient as it could be:
given a point P = (X : Y : Z), the Y coordinate is uniquely determined (up to a sign)
by the (X : Z) coordinates as Y =

√
F (X,Z)/BZ. This means that the group law can

be computed using only the (X : Z)-coordinates of the points, and the Y -coordinate
can be recovered at the end of the computation if needed. This is the basis of the
x-only arithmetic on Montgomery curves.
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Consider the canonical involution [−1] of Lemma 1.8 on a curve E. It is an auto-
morphism of the curve, both as an algebraic variety and as a group. Quotienting by
⟨[−1]⟩ gives a double cover of E to P1:

x : E(kalg) → P1(kalg)
P = (X : Y : Z) 7→ (X : Z) = (x(P ) : 1) if (X,Z) ̸= (0, 0),
0E = (0 : 1 : 0) 7→ (1 : 0).

Definition 1.19. Via the cover x, we identify the projective line P1 with the Kummer
line KE := E/ ⟨−1⟩ of the elliptic curve E. It is also called the x-line of E, since
if we see (1 : 0) as the point at infinity we are left with an affine line made of the
x-coordinates of points of E.

The Kummer line of a Montgomery curve has another involution worth noting,
that we’ll see again when dealing with theta models in Chapter 2.

Proposition 1.20. Let T = (XT : YT : ZT ) be a point of order 2 on E. The
translation-by-T involution

tT : E → E, P → P + T

induces the k-automorphism of the Kummer line given by

t′T : P1 → P1, (X : Z) 7→ (XTX − ZTZ : ZTX −XTZ).

In particular, if T = T0 = (0 : 0 : 1), then the transformation is just a permutation of
the coordinates:

x(P ) = (X : Z) 7→ x(P + T0) = (Z : X).

Proof. As seen in Example 1.14, xT = XT /ZT is a root of the polynomial f(x) =
x(x2+Ax+1) and yT = YT /ZT = f(xT ) = 0. From the shape of the polynomial, 1/xT
is also a root of f , so A = −(xT + 1/xT ). The addition law 1.18 with Q = T gives

Bλ2 =
By2P

(xP − xT )2
=
xP (x

2
P +AxP + 1)

(xP − xT )2

and

x+ = X+/Z+ = Bλ2 − (A+ xT )− xP =

=
xP (x

2
P +AxP + 1)

(xP − xT )2
− 1

xT
− xP

=
xPxT − 1

xP − xT
=
XTXP − ZTZP
ZTXP −XTZP

.
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Arithmetic on the Montgomery Kummer line

Points on the Kummer line can be thought as points on the curve defined up to sign:
the Kummer point x(P ) ∈ KE(Fq) is the image of two points P and −P on E. They
are not necessarily Fq-rational (the Y -coordinate could be in Fq2).

The Kummer line is not an algebraic group, that is, it does not inherit an addition
law from E. However, we still have a pseudo-addition law. Since points on the Kummer
line are defined up to sign, the knowledge of x(P ) and x(Q) only determines the set
{x(P + Q),x(P − Q)}. Once we know the x-coordinates of one of these two points,
say x(P −Q) ∈ KE , then we can uniquely recover the x-coordinates of P +Q. Then
the following is well-defined:

Definition 1.21. Let EA,B be a Montgomery curve, and let P,Q ∈ EA,B(k) be two
points. We can define the differential addition operation on the Kummer line:

diff add : (x(P ),x(Q),x(P −Q)) 7→ x(P +Q) ∈ KE(k).

Warning: the differential addition law does not define a function on the whole K3
E ,

since it is defined only on triples of the form (x(P ),x(Q),x(P −Q)) ∈ K3
E .

In the special case where P = Q, then we get the doubling operation:

Definition 1.22. Let P ∈ EA,B(k) be a point. We can define the doubling operation
on the Kummer line:

dbl : KE(k)→ KE(k), x(P ) 7→ x(2P ).

The above maps are not only well-defined, but also efficiently computable. If we
know the x-coordinates of two points P,Q and their difference P − Q, then we can
compute the coordinates of P +Q in a way that is faster than using the group law on
E: see Algorithms 1 and 2.

Algorithm 1 x-only Montgomery differential addition

Input: x(P ) = (XP : ZP ),x(Q) = (XQ : ZQ),x(P − Q) = (X− : Z−) with P,Q ∈
E(k)

Output: x(P +Q) = (X+ : Z+)
1: U ← (XP − ZP ) · (XQ + ZQ)
2: V ← (XP + ZP ) · (XQ − ZQ)
3: X+ ← Z− · (U + V )2

4: Z+ ← X− · (U − V )2

5: return (X+ : Z+) ▷ Complexity: 4 M, 2 S

We can do more, and compute scalar multiplications by any n ∈ Z.

Definition 1.23. Let P ∈ EA,B(k) be a point on a Montgomery curve, n an integer.
Since the elliptic involution [−1] is compatible with [n] (that is, −[n]P = [n](−P )),
the following map is well defined:

ladder : Z×KE(k)→ KE(k), (n,x(P )) 7→ x([n]P ).
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Algorithm 2 x-only Montgomery doubling

Input: x(P ) = (XP : ZP ) with P ∈ E(Fq), and A′ = (A + 2)/4 where A is the
Montgomery coefficient of E

Output: x(2P ) = (X2 : Z2)
1: Q← (XP + ZP )

2

2: R← (XP − ZP )2
3: S ← Q−R
4: X2 ← Q ·R
5: Z2 ← S · (R+A′ · S)
6: return (X2 : Z2) ▷ Complexity: 3 M, 2 S

Combining doubling and differential additions, we can get an algorithm to compute
the scalar multiplication x([n]P ) on the Kummer line in O(log n) operations.

Definition 1.24. Let S = {a0, . . . , ar} be a sequence of integers such that a0 =
0, a1 = 1. It is called a differential addition chain if for each j in (2, . . . ,m) we can
write aj = ai + ak for some i, k < j and ai − ak ∈ S.

A differential addition chain induces an algorithm to compute x([ar]P ):

� At the beginning, we know (1 : 0) and x(P ).

� For each j in (2, . . . , r), we write aj = ai + al and compute x([aj ]P ) =
diff add(x([ai]P ),x([al]P ),x([ai − al]P )).

Proposition 1.25. The Montgomery ladder algorithm shown in Algorithm 3 computes
the scalar multiplication x([m]P ) on a Montgomery curve EA,B in O(logm) operations.

Proof. Let r = ⌊logm⌋. We show by induction that the Montgomery ladder is induced
by the following differential addition chain for m, of length 2r:

S = {
⌊
m/2i

⌋
− 1,

⌊
m/2i

⌋
| i ∈ (r, . . . , 0)}.

Indeed, we show that the ladder keeps the following invariants:

R0 = x([
⌊
m/2i

⌋
]P ), R1 = x([

⌊
m/2i

⌋
+ 1]P ).

The base case i = r is clear. Suppose the invariants hold at step i, then if mi = 0 we
have R0 = dbl(R0) = x([

⌊
m/2i−1

⌋
]) and R1 = diff add(R0, R1,x(P )) = x([

⌊
m/2i

⌋
+⌊

m/2i
⌋
+ 1]P ) = x([

⌊
m/2i−1

⌋
+ 1]P ). If mi = 1, the computation is symmetric.

Remark 1.26. In the Montgomery ladder, every time we compute diff add, the difference
point is P . This enhances efficiency in the algorithm, since we can re-use the quantities
depending on x(P ) at each step.
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Algorithm 3 x-only Montgomery ladder

Input: m =
∑r

i=0mi2
i and x(P ) = (XP : 1) with P in E(Fp)

Output: x([m]P )
1: (R0, R1)← (x(0E) = (1 : 0),x(P ))
2: for i in (r, . . . , 0) do
3: if mi = 0 then
4: (R0, R1)← (dbl(R0), diff add(R0, R1,x(P )))
5: else
6: (R0, R1)← (diff add(R0, R1,x(P )), dbl(R1))

7: return R0

1.2 Isogenies

Definition 1.27. Let E1 and E2 be elliptic curves over a field k. An isogeny φ : E1 →
E2 is a non-constant morphism of algebraic varieties such that φ(0E1) = 0E2 . An
isogeny is said to be separable (resp. k-rational) if it is separable (resp. k-rational) as
a morphism of varieties. We denote by degφ = [k(E1) : φ

∗k(E2)] its degree.

Remark 1.28. From now on, all isogenies will be assumed to be separable, unless oth-
erwise specified.

Proposition 1.29. Let φ : E1 → E2 be an isogeny. On geometric points, it induces

φ(kalg) : E1(k
alg)→ E2(k

alg)

which is a surjective map and a group homomorphism, whose kernel K = kerφ is a
finite subgroup of E1(k

alg). 1

If K ≤ E1(k
alg) is a subgroup, then there exists a unique separable isogeny φ : E1 →

E2 such that kerφ = K, up to post-composition with an isomorphism on the codomain.
Its degree is degφ = #K.

Proof. [Sil09, II, Theorem 2.3] shows surjectivity. For the group homomorphism prop-
erties, see [Sil09, III, Theorem 4.8, Corollary 4.9]. The equality degφ = #K is [Sil09,
II, Proposition 2.6b]. Uniqueness of φ given K follows from the following lemma.

Lemma 1.30 ([Sil09, III, Corollary 4.11]). Let E1 and E2 be elliptic curves, φ : E1 →
E2 a separable isogeny, φ′ : E1 → E3 another isogeny such that kerφ ⊆ kerφ′. Then
there exists a unique isogeny ψ : E2 → E3 such that φ = ψ ◦ φ′.

Since it coincides with the degree as a morphism of varieties, the degree of an
isogeny is multiplicative:

Proposition 1.31. Let φ : E1 → E2 and φ′ : E2 → E3 be isogenies of elliptic curves.
Their degrees satisfy deg(φ′ ◦ φ) = deg(φ′) deg(φ).

1Technically speaking, the kernel kerφ is a finite subscheme of E1. In the sequel, we restrict our
attention to separable isogenies, and abuse notation by identifying kerφ with kerφ(kalg).
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Isogeny computation

Devising efficient algorithms to compute isogenies is a fundamental problem in compu-
tational number theory, with several practical applications, of which we will see some
in Chapter 5. We state more precisely what computing isogenies means:

Problem 1.32 (Isogeny computation). Let E1 be an elliptic curve over a finite field k,
P1, . . . , Pr ∈ E1(k) some points generating the kernel K = ⟨P1, . . . , Pr⟩ of a separable
isogeny φ : E1 → E2 = E1/K. By computing φ, we mean running an algorithm that
takes as input the points P1, . . . , Pr and outputs:

1. Coefficients defining the codomain curve E2 = E1/K;

2. An efficient algorithm that, on input any point R ∈ E1, outputs the image φ(R).
If an algorithm only does part 1 it is a codomain algorithm, if it only does part 2 it is
an evaluation algorithm.

In practice, since the representation of elliptic points on the Kummer line is par-
ticularly efficient, we also consider the relaxed problem:

Problem 1.33 (Kummer isogeny computation). Keep the notation of Problem 1.32.
An algorithm for Kummer isogeny computation takes as input the Kummer points
x(P1), . . . ,x(Pr) and outputs:

� Those coefficients defining E2 = E1/K that are necessary to compute the arith-
metic on KE2 ;

� An efficient algorithm that, on input any Kummer point x(R) ∈ KE1 , outputs
the image x(φ(R)).

In view of the applications, we are mostly interested in cyclic separable isogenies:

Definition 1.34. Let E1/k be an elliptic curve, and P ∈ E1[ℓ] a point of order ℓ ∤ p.
Then the isogeny with kernel K = ⟨P ⟩ ∼= Z/ℓZ is called a cyclic ℓ-isogeny.

Several algorithms exist to compute ℓ-isogenies. If ℓ is prime, an ℓ-isogeny can be
computed using Vélu’s formulas (see [Was08, Section 12.3]) which have a complexity
of O(ℓ) operations in k. For large ℓ, there is the more convenient VéluSqrt algorithm
[BDLS20] of complexity O(

√
ℓ). This is quite slow for cryptographic applications,

where degrees of isogenies are typically several hundreds bits large. In Chapter 5, we
will see that given an ℓ-isogeny φ : E1 → E2, if we know both E1 and E2 and the image
of a point P ∈ E1 of order 2n for large enough n, we can compute φ in polynomial
time wirth respect to log ℓ with the help of isogeny computation on abelian surfaces
(the 2-dimensional analogue of elliptic curves).

When ℓ is very small instead, using Vélu’s formulas is still pretty efficient: see for
example the following proposition for the case ℓ = 2 in the Montgomery model.

Proposition 1.35 ([Ren18, Section 4.2]). Let E be a Montgomery elliptic curve, and
P ̸= (0 : 0 : 1) ∈ E[2] be a 2-torsion point, represented as x(P ) = (XP : ZP ) in the
Kummer variety. Then Algorithm 4 is a Kummer isogeny evaluation algorithm for
φ : E → E/ ⟨P ⟩ in the sense of Problem 1.33.
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Algorithm 4 x-only Montgomery 2-isogeny

Input: x(P ) = (XP : ZP ) where P ∈ E[2] generates the kernel of φ : E → E′ =
E/ ⟨P ⟩, any point x(R) = (X : Z).

Output: The point x(φ(R)) = (X ′ : Z ′).
1: U ← (X + Z) · (XP − ZP )
2: V ← (X − Z) · (XP + ZP )
3: X ′ ← X · (U + V )
4: Z ′ ← Z · (U − V )
5: return (X ′ : Z ′) ▷ Complexity: 4 M

If ℓ is a composite number with small factors, we can compute the isogeny as a
composition of (fast) smaller isogenies.

Definition 1.36. An integer N is called a B-smooth number if all its prime factors
are smaller than a bound B. The smoothness of N is the largest prime factor of N .

Proposition 1.37. Let φ : E0 → Er be an N -isogeny, where N = deg(φ) =
∏r
i=1 ℓi

is a B-smooth number, with ℓi ≤ B not necessarily distinct. Then φ can be computed
as a composition of smaller-degree isogenies φ = φr ◦ · · · ◦ φ1, where degφi = ℓi, via
Algorithm 5, with complexity O(r(B + r logB)).

Definition 1.38. An N -isogeny φ = φr ◦ · · · ◦ φ1 is also called an isogeny chain of
length r.

Proof of Proposition 1.37. The decomposition of φ could be proven via a repeated
application of Lemma 1.30 (see [Gal12, Theorem 25.1.2]), but we give a more explicit
proof.

Let K = kerφ = ⟨P ⟩. For simplicity, we prove correctness of the algorithm when
N = 2r, that is, ℓi = 2 for all i.

Set K0 =
〈
[2r−1]P

〉
and inductively define, for i = 1, . . . , r:

φi : Ei−1 → Ei = Ei−1/Ki−1, Ki = [2r−1−i]φi ◦ · · · ◦ φ1(K).

We claim that ker(φi ◦ · · · ◦ φ1) =
〈
[2r−i]P

〉
for all i = 1, . . . , r.

From this, the conclusion follows: for i = r we have ker(φr ◦· · ·◦φ1) = ⟨P ⟩ = kerφ,
so indeed φ decomposes as φr ◦ · · · ◦ φ1 by Proposition 1.29.

Moreover, each step has indeed degree 2. In fact, Hi := φi◦· · ·◦φ1(K) is isomorphic
to ⟨P ⟩ /

〈
[2r−i]P

〉
, which has cardinality 2r−i. We then write #kerφi+1 = #Ki =

#([2r−i−1]Hi) = 2r−i/2r−i−1 = 2, as desired.
We prove the claim by induction on i. For i = 1 there’s nothing to prove. Assuming

the conclusion true for i− 1, we have

ker(φi ◦ · · · ◦ φ1) = {R ∈ E0 | φi−1 · · ·φ1(R) ∈ Ki−1 = φi−1 · · ·φ1(
〈
[2r−i]P

〉
)} =

=
〈
ker(φi−1 ◦ · · · ◦ φ1), [2

r−i]P
〉
=

=
〈
[2r−i−1]P, [2r−i]P

〉
=
〈
[2r−i]P

〉
.
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Algorithm 5 Smooth isogeny chain computation

Input: An elliptic point P ∈ E0[N ] with N =
∏r
i=0 ℓi, a B-smooth integer, p ∤ N .

Output: The isogeny φ : E0 → Er with kernel K = ⟨P ⟩, in the sense of Problem 1.32.
1: P0 ← P
2: for i in (1, . . . , r) do ▷ r steps
3: Ri ← [N/

∏i
j=1 ℓj ]Pi−1 ▷ Cost: O(logN) = O(r logB)

4: Compute the ℓi-isogeny φi : Ei−1 → Ei with kernel Ki = ⟨Ri⟩
5: ▷ Cost: O(ℓi) = O(B)
6: Push the kernel through the isogeny: Pi ← φi(Pi−1) ▷ Hi = ⟨Pi⟩
7: return Compose(φr, . . . , φ1)

1.3 Divisors and pairings

This section is dedicated to another computational problem on elliptic curves, that of
computing pairings. In order to define them, we need to introduce the fundamental
concept of divisors.

Definition 1.39. Let E/k be an elliptic curve. A divisor on E is a formal sum of
points on E with integer coefficients:

D =
∑
P∈E

nP (P ),

with nP ∈ Z and nP = 0 for all but finitely many P .
The support of a divisor D is the set supp(D) = {P ∈ E | nP ̸= 0}.
The degree of a divisor D is the sum of its coefficients: deg(D) =

∑
P∈E nP .

The set of all divisors on E forms a group under addition, and is denoted by Div(E).
Its subgroup of divisors of degree 0 is denoted by Div0(E).

Definition 1.40. Let k(E) be the field of rational functions on the curve E. The
principal divisor associated with a function f ∈ k(E)∗ is the divisor

div f =
∑
P∈E

ordP (f) · (P )

where ordP (f) is the order of vanishing of f at P .
The set of all principal divisors on E is denoted by Princ(E) and is contained in

Div0(E) ([Sil09, Proposition II.3.1]).
The only functions whose divisor is 0 are the constants in k∗. Therefore, if some

functions f, g ∈ k(E)∗ have the same divisor, they differ by a nonzero constant in k∗.

Example 1.41. Let E be an elliptic curve in (affine) Montgomery form By2 = x(x2+
Ax + 1) with x = X/Z, y = Y/Z the affine coordinates relative to the projective
coordinates (X : Y : Z).

� Let P ̸= 0E , and f = x− x(P ). Then div f = (P ) + (−P )− 2(0E).
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� Let P,Q ∈ E such that P ̸= −Q. Let f = y− (mx+ q) be the equation defining
the line LP,Q through P and Q (the tangent line, if P = Q). Let R be the third
point of intersection of LP,Q with E. Then div f = (P ) + (Q) + (R)− 3(0E).

This comes from the fact that x and y have poles of order 2 and 3 at 0E respectively.

Definition 1.42. Define the degree-0 Picard group Pic0(E) as the group of divisors
of degree 0 modulo principal divisors: Pic0(E) = Div0(E)/Princ(E).

Two divisors that differ by a principal divisor are said to be linearly equivalent.

The following Theorem is the first manifestation of the polarisations that we’ll
encounter in Chapter 2 when dealing with abelian varieties.

Theorem 1.43 ([Sil09, III, Proposition 3.4]). Every elliptic curve is canonically iso-
morphic to its degree-0 Picard group, via the following isomorphism:

(1.4)
λ(0E) : E → Pic0(E)

P 7→ [(P )− (0E)]

with inverse
λ−1
(0E) : Pic0(E) → E

[
∑

i ni(Pi)] 7→
∑

i[ni]Pi.

Pairings

We are now ready to define some important pairings on elliptic curves. The interested
reader can find detailed treatments in [Gal05] and [CFA+12, Chapters 6, 16].

Definition 1.44. Let E/k be an elliptic curve, and let ℓ ∈ N be an integer coprime
with p = char(k). The ℓ-Weil pairing on E is a bilinear map

eW,ℓ : E[ℓ]× E[ℓ]→ µℓ

where µℓ is the group of ℓ-th roots of unity in kalg, satisfying some additional properties:
� skew-symmetry: eW,ℓ(P,Q) = eW,ℓ(Q,P )

−1 for all P,Q ∈ E[ℓ];

� non-degeneracy: eW,ℓ(P,Q) = 1 for all Q ∈ E[ℓ] if and only if P = 0E .

� Galois equivariance: for all σ ∈ Gal(kalg/k), eW,ℓ(σ(P ), σ(Q)) = σ(eW,ℓ(P,Q))
for all P,Q ∈ E[ℓ].

� compatibility with scalars: eW,ℓℓ′(P,Q) = eW,ℓ([ℓ
′]P,Q) for all P ∈ E[ℓℓ′], Q ∈

E[ℓ].

� compatibility with isogenies: eW,ℓ(φ(P ), φ(Q)) = eW,ℓ(P,Q)degφ for all P,Q ∈
E[ℓ] and all isogenies φ : E → E′.

Concretely, we can construct the pairing via the use of divisors.

Notation 1.45. Let f ∈ k(E) be a rational function, and D =
∑

i ni(Pi) a divisor
with support disjoint from div f . We can evaluate f on the divisor D as

f(D) =
∏
i

f(Pi)
ni .
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Definition 1.46 (Weil pairing: operational definition). Let P,Q ∈ E[ℓ] be points of
order ℓ. The divisors DP = (P ) − (0E) = λ(0E)(P ), DQ = (Q) − (0E) are elements of

order ℓ in Pic0(E). Choose D′
Q ∼ DQ ∈ Pic0(E) with support disjoint from that of

DP . Then let fP , fQ ∈ k(E) be rational functions with divisor respectively div fP =
ℓDP = ℓ(P )− ℓ(0E), and analogously div fQ = ℓD′

Q. The map

e : E[ℓ]× E[ℓ] → k∗

(P,Q) 7→ fP (D′
Q)

fQ(DP )

D′
Q ∼ DQ in Pic0(E)

is bilinear, maps E[ℓ] × E[ℓ] onto the group µℓ of the ℓ-th roots of unity in k∗, and
satisfies the additional properties listed above.

Definition 1.47. If P is a point of ℓ-torsion, a function fP whose divisor is ℓ(P )−ℓ(0E)
is called a Miller function for P .

In the algorithmic applications, another useful pairing on elliptic curves is the Tate
pairing. Unlike the Weil pairing, its codomain depends on the base field k:

Definition 1.48. Let P ∈ E[ℓ](k), Q ∈ E(k)/E[ℓ](k). Let fP be a rational function of
divisor div fP = ℓ((P )− (0E)), and let DQ be a divisor that is equivalent to (Q)− (0)
but whose support is disjoint from {P, 0}. The map

eT,ℓ : E(k)[ℓ]× E[ℓ] → k∗/(k∗)ℓ

(P,Q) 7→ fP (DQ)

is bilinear, non-degenerate, satisfies the properties of compatibility with scalars and
with isogenies listed in 1.44. It is called the ℓ-Tate pairing on E, and its value is defined
up to ℓ-th powers in k.

We want to find an algorithm to compute these pairings efficiently given P,Q, ℓ.
Using the definitions above, to do so one could try and find a way to explicitly com-
pute coefficients for the rational function fP (and fQ for the Weil pairing), but these
functions have prohibitively large degree when ℓ is large. However, it is sufficient to
find an evaluation algorithm that on input X ∈ E(k) outputs fP (X): this can be done
via Miller’s algorithm.

Proposition 1.49 (Miller’s algorithm). Let E/k be an elliptic curve, P ∈ E[ℓ](k) a
point of order ℓ, and D ∈ Div(E) with support disjoint from {P, 0E}. Then Algorithm 6
computes the evaluation of the Miller function fP at the divisor D in O(log ℓ) operations
in k.

In particular, the cost of computing the Tate pairing (resp. the Weil pairing, when
Q ∈ E[ℓ]) is O(log ℓ), since it amounts to one (resp. two) Miller function evaluations.

Sketch. The key idea of Miller’s algorithm is to consider the group law on E and “see
it in Div(E)”. More precisely, let P,Q ∈ E, set R = P +Q. Then, in Div(E):

(P )− (0E) + (Q)− (0E)− ((R)− (0E)) = div(gP,Q)
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for some gP,Q ∈ k(E): a point addition in E corresponds to a certain principal divisor
in Div(E).

This gP,Q can be computed as follows. Let LP,Q be the line through P,Q and VR
the vertical line through R,−R. Then:

divLP,Q = (P ) + (Q) + (−R)− 3(0E), div VR = (R) + (−R)− 2(0E),

hence we can set gP,Q = LP,Q/VR.
Now let fi,P be a function with divisor i(P ) + −([i]P ) − (i − 1)(0E), so that if

P ∈ E[ℓ] then the function fℓ,P (Q) returned at the end is a Miller function for P
evaluated at Q.

At each step of the algorithm, we have R = [
⌊
ℓ/2i+1

⌋
]P =: [mi]P , as in a double-

and-add algorithm, and we show that f equals fmi,P (up to a constant). Before entering
the loop (set conventionally i = b = ⌊log ℓ⌋) this is true: mi = 1 and f = f1,P has
trivial divisor.

For the inductive step, suppose we have (R, f) = ([mi], fmi,P ). Then we compute
[2]R = [2mi]P and f2 · gR,R(Q) whose divisor is

(2mi(P ) +−2([mi]P )− 2(mi − 1)(0E)) + (2([mi]P )− ([2mi]P )− (0)) =

= 2mi(P ) +−([2mi]P )− (2mi − 1)(0E) = div f2mi,P .

Algorithm 6 Miller’s Algorithm

Input: P ∈ E[ℓ](k), a divisor DQ ∼ (Q)− (0E) ∈ Div(E) such that P, 0E /∈ suppDQ,

an integer ℓ =
∑b

i=0 ℓi2
i

Output: The non-reduced Tate pairing eT,ℓ(P,Q) = fℓ,P (DQ)
1: (R, f)← (P, 1)
2: for i in (b− 1, . . . , 0) do

3: (R, f)← ([2]R, f2 · LR,R

V[2]R
(DQ))

4: if ℓi = 1 then
5: (R, f)← (R+ P, f · LR,P

VR+P
(DQ)) ▷ R = [

⌊
ℓ/2i−1

⌋
]P , f = f⌊ℓ/2i−1⌋,P

6: return f





Chapter 2

Higher dimensions

2.1 Abelian varieties

In the last chapter, we introduced elliptic curves and some of their algorithmic as-
pects: an efficient coordinate representation, the group law, isogenies and pairings.
The following three chapters will be devoted to generalising these aspects to general
principally polarised abelian varieties, a higher-dimensional analogue of elliptic curves.

In this chapter, we will begin by setting a theoretical framework to work with
abelian varieties, and we’ll introduce convenient coordinate systems via the use of
theta structures. Elliptic curves will fit into this framework as abelian varieties of
dimension 1, and their representation will not be much different from the Montgomery
model we have seen in Chapter 1.

General definitions

Let us first review some theory of abelian varieties. We will present some basic facts;
for a more detailed treatment, see [Mil86a], [Mum74].

As in the case of elliptic curves, we will work over a finite field k = Fq of character-
istic p ̸= 2, 3. In the applications, typically we have p ≈ 2n with n ∈ {128, 256, 512}.

Definition 2.1. A group variety over a field k is an algebraic variety G over k equipped
with k-rational maps m : G × G → G, i : G → G and a rational point e ∈ G(k) such
that G(kalg) is a group with respect to the operations induced by the multiplication
map m and the inversion map i, with e as the identity element.

Definition 2.2. An abelian variety A over a field k is a reduced, connected, projective
group variety over k.

Remark 2.3. When working with abelian varieties abstractly, the notion of maps and
points defined over k (or k-rational) is best formalised in the language of schemes:
for example, a k-rational point in A(k) is a morphism Spec k → A. Once we fix a
projective embedding ι : A ↪→ Pn, we can work with the variety as a subvariety of

17
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projective space, and the points P ∈ A(k) defined over k are those whose coordinate
representation ι(P ) = (X0(P ) : · · · : Xn(P )) is defined in Pn(k).

Example 2.4. Let E be an elliptic curve over k. Then E, with the chord-tangent
law of Proposition 1.10 as group law, the involution [−1] as inversion and the point at
infinity 0E as neutral point, is an abelian variety of dimension 1.

Abelian varieties are pretty rigid objects: the fact of being projective group varieties
imposes a lot of structure. For example:

Proposition 2.5 ([Mil86a, Corollary 2.2] Rigidity lemma for morphisms of abelian
varieties). Let f : A→ B be a morphism of abelian varieties over a field k. Then f is
the composition of a translation map and a group homomorphism. In particular, any
algebraic morphism sending the neutral point eA to eB is a group homomorphism.

An immediate corollary justifies the attribute “abelian” in the name:

Corollary 2.6. Let A be an abelian variety over a field k. Then the group law on A
is commutative.

Proof. The inversion map i : A→ A leaves the neutral point fixed, therefore is a group
homomorphism. A group is abelian if and only if inversion is a homomorphism.

Notation 2.7. We write A/k to say A is an abelian variety over k. Since its group
law is commutative, we denote it by +, the inversion map by − (or [−1]), the neutral
point by 0A. We denote by KA the Kummer variety A/ ⟨[−1]⟩.

Isogenies

Definition and properties of isogenies carry over almost word by word from elliptic
curves to general abelian varieties:

Definition 2.8. Let A,B/k be abelian varieties, and f : A → B a nonconstant mor-
phism of algebraic varieties. We say that f is an isogeny if it is a surjective group
homomorphism with finite kernel. In that case, A is said to be isogenous to B.

As an algebraic morphism, f induces a field extension [k(A) : f∗k(B)]. We define
deg f to be the degree of this extension, and we say f is separable if the extension is.

Isogenies of degree 1 of abelian varieties are invertible, and are called isomorphisms.

Remark 2.9. In the sequel, all the isogenies we work with will be separable. Given an
isogeny f , we will often identify ker f with its geometric points ker f(kalg).

As with elliptic curves, the simplest example of isogeny is scalar multiplication:

Example 2.10 (Scalar multiplication). Let n ∈ Z be a positive integer, A an abelian
variety. The multiplication-by-n map

[n] : A→ A, P 7→


0A if n = 0,

[n− 1]P + P if n > 0,

−[−n]P if n < 0,
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is an isogeny of degree n2g. The kernel of [n] is denoted by A[n], and its geometric
points are called n-torsion points.

When p ∤ n, the isogeny [n] is separable and its kernel is A[n] ∼= (Z/nZ)2g, where g
is the dimension of A.

Proof. See [Mil86a, Theorem 8.2, Remark 8.4].

The analogue of Lemma 1.30 holds for abelian varieties:

Lemma 2.11. Let f : A → C be an isogeny of abelian varieties, and g : A → B a
separable isogeny with ker g ⊆ ker f . Then there exists a unique isogeny h : B → C
such that f = h ◦ g.

In particular, if K = ker g = kerf , then B and C are isomorphic and uniquely
determined (up to isomorphism) by K. In this case, we denote the codomain as A/K.

Proof. The proofs in [Sil09, III, Corollary 4.11, Proposition 4.12] apply to any abelian
variety.

Proposition 2.12. If A,B are isogenous abelian varieties, then they have the same
dimension. “Being isogenous” is an equivalence relation.

Proof. For the first statement, see [Mil86a, Proposition 8.1]. For the second, the
identity map is an isogeny, and the composition of isogenies is an isogeny. Symmetry
is shown as follows. Let f : A→ B be an isogeny. If f is separable, then n = deg f is
the cardinality of ker f (as a scheme), so ker f ⊆ ker([n]). By Lemma 2.11, there exists
g : B → A such that [n] = g ◦ f . For the general case, see [Sil09, Theorem III.6.1].

2.2 Polarised abelian varieties

In this section, the theory of abelian varieties begins to differ from that of elliptic
curves. First, we introduce the notion of dual abelian variety of an abelian variety A.
Elliptic curves are canonically isomorphic to their duals, whereas this is not the case
in higher dimension.

Then, we introduce polarisations and principal polarisations on abelian varieties.
The latter are isomorphisms between a variety and its dual. In higher dimension they
need no longer exist nor be unique; however, in order to make many constructions work
properly (pairings, projective embeddings, isomorphism invariants) we need to fix the
choice of a polarisation and keep track of it. This is why working with abelian varieties
algorithmically is slightly more involved than with elliptic curves, and why actually
our concept generalising elliptic curves will be that of polarised abelian varieties.

Divisors and line bundles

To be able to introduce the dual abelian variety, we first generalise the notions related
to divisors on an elliptic curve to the higher-dimensional case. Definitions 1.39, 1.40,
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1.42 on elliptic curves carry over to general abelian varieties by replacing points of E
by codimension-1 subvarieties of A (defined over kalg).

Definition 2.13 (Divisors, degree of a divisor, Picard group over kalg).

Div(A) = {
∑m

i=1
ni(Wi) | m ∈ N, ni ∈ Z,Wi ⊆ A,dimWi = dimA− 1 for all i},

div(f) =
∑

W codim.-1 subvar.
ordW (f)(W ) for f ∈ kalg(A)∗,

Pic(A) = Div(A)/ ∼, D1 ∼ D2 ⇔ D1 −D2 = div(f) for some f ∈ kalg(A)∗,

deg(D) =
∑

i
ni if D =

∑
i
ni(Wi) ∈ Div(A),

Div0(A) = {D ∈ Div(A) | degD = 0},
Pic0(A) = {D ∈ Pic(A) | degD = 0} = Div0(A)/ ∼

Definition 2.14. Let A/k be a variety, D =
∑

i ni(Wi) ∈ Div(A) a divisor. For any
field extension K ⊇ k, we say that D is defined over K, and write D ∈ DivK(A), if for
all σ ∈ Gal(kalg/K), we have σ(D) :=

∑
i ni(σ(Wi)) = D.

A divisor class [D] ∈ Pic(A) is defined over K (we write [D] ∈ Pic(A)(K)) if some
divisor in the class is.1 We use analogue notations for Div0K(A),Pic0(A)(K).

To ease our following exposition, it is useful to sometimes switch from the language
of divisors to the equivalent language of invertible sheaves on A. Some familiarity with
invertible sheaves is assumed, see [Vak24, Chapter 14] for an introduction.

Definition 2.15 (Invertible sheaf associated with a divisor). Let A/k be a smooth
variety. Any divisor on A induces an invertible sheaf L = LD = O(D) whose local
sections on a Zariski open U ⊆ A can be identified with the functions f ∈ k(U)∗

such that div(f) + D =
∑

i ni(Wi) with ni ≥ 0 for all i, and the zero section f = 0.
Viceversa, any invertible sheaf L on A is of the form LD for some D.

By abuse of terminology, we will interchangeably use the terms invertible sheaf and
line bundle for L.

In practice, we will often work with divisors and line bundles in parallel, using the
language that is most convenient for the task at hand. The following table summarises
a dictionary between the two languages. See [Vak24, §15.4] for more details.

Divisor D Line bundle LD = O(D)
Degree degD Degree degLD
Sum D1 +D2 Tensor product LD1+D2 = LD1 ⊗ LD2

Negation −D Inverse L−D = L−1
D

Principal divisor D = div(f) Trivial line bundle LD ∼= O = L0

Linear equivalence D1 ∼ D2 Isomorphism LD1
∼= LD2

1This definition is not entirely standard: if A is a variety over k, we could define Pic(A)(k) as
Divk(A)/k(A)∗. The two definitions are not equivalent in general, but luckily they are in our case
since the varieties we work with are smooth and proper.
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Notation 2.16. For a smooth variety A, the set PicLB(A) of line bundles on A up
to isomorphism forms a group under tensor product, and is canonically isomorphic to
Pic(A). In the sequel, we’ll denote both groups as Pic(A). Likewise, the subgroup of
line bundles of degree 0 is denoted by Pic0(A).

Due to our algorithmic motivation, we are interested in representing explicitly the
varieties we work with using projective coordinates. The following definition helps:

Definition 2.17. A line bundle L on an abelian variety A is called ample if some
tensor power L⊗n is very ample, i.e., there are global sections s0, . . . , sr ∈ Γ(A,L⊗n)
such that the morphism

[s0 : s1 : · · · : sr] : A→ Pr

is a closed embedding.

Example 2.18. Let E be an elliptic curve, and set D = (0E). The line bundle
L3D = L3(0E) is very ample. Indeed, by Riemann-Roch:

dimΓ(LD) = 1 ⇝ Γ(LD) = ⟨Z1⟩ ,
dimΓ(L2D) = 2 ⇝ Γ(L2D) =

〈
X2, Z2 = Z2

1

〉
,

dimΓ(L3D) = 3 ⇝ Γ(L3D) =
〈
X = X2Z1, Y, Z = Z3

1

〉
A word on the notation: here all sections Z1, Z2, Z are identified with the constant
rational function 1 ∈ k(E)∗, but they’re technically different objects, being sections on
different line bundles. Similarly, X2 and X are both represented by x ∈ k(E)∗.

Using Riemann-Roch again on L6D gives

dimΓ(L6D) = 6 ⇝ {X3
2 , X

2, XY, Y 2, XZ, Y Z,Z2} are linearly dependent.

This last linear dependence relation is equivalent to the fact that the generators X,Y, Z
of Γ(L3D) satisfy an equation of the form (1.3), that is, they are the coordinates defining
the projective embedding of E in P2.

If instead we use the generators of L2D, we get the projective representation of the
Kummer line: (X2 : Z2) = (X : Z) induce the embedding KE

∼−→ P1. This is a more
general phenomenon that we will see in the next sections.

Remark 2.19. By Lefschetz’s theorem [Mum74, Section 17], if L is ample, then L⊗n is
very ample when n ≥ 3.

The dual abelian variety

Definition 2.20. Let A be an abelian variety. Then, the dual abelian variety of A is
a k-variety whose K-points are Â(K) = Pic0(A)(K).

Proposition 2.21 ([Mil86a, §9, 10]). Let A be an abelian variety. Its dual abelian
variety Â always exists and is unique up to isomorphism. Moreover, it has the same
dimension as A, and if B = Â then A = B̂.
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In the case of an elliptic curve E, there is an isomorphism E → Ê which, seen on
geometric points, is the isomorphism λ(0E) of Theorem 1.43.

Definition 2.22 (Dual isogeny). Let f : A→ B be a k-isogeny. Then the pull-back

f∗ : Pic0(B)→ Pic0(A), L 7→ f∗L

is an isogeny. It is also denoted by f̂ : B̂ → Â and it is called the dual isogeny of f .

Polarisations

Polarisations are isogenies between an abelian variety and its dual that look like (1.4).
We will construct them by means of line bundles.

Notation 2.23 (Translation map). Given a point P ∈ A, we denote by tP : A → A
the translation map Q 7→ P + Q. It is an automorphism on A, and is k-rational if
P ∈ A(k).

Theorem 2.24 (Theorem of the square, [Mil86a, Theorem 6.7]). Let L be an invertible
sheaf on A, and P,Q be points of A. Then we have an isomorphism

(2.1) t∗P+QL ⊗ L ∼= t∗PL ⊗ t∗QL

where tR is the translation-by-R map.

Remark 2.25. Rephrasing the theorem, if we tensor the above isomorphism by L−2,
we get

t∗P+QL ⊗ L−1 ∼= (t∗PL ⊗ L−1)⊗ (t∗QL ⊗ L−1).

In other words, the following map

(2.2) λL : A→ Pic(A), P 7→ t∗PL ⊗ L−1

is a group homomorphism. Moreover, t∗P (L)⊗L−1 always has degree degL−degL = 0,
so the image λL(A) lies in Pic0(A).

Definition 2.26. A k-polarisation on an abelian variety A is an isogeny λ : A → Â
defined over k such that its extension of scalars to kalg is of the form (2.2):

λkalg : Akalg → Âkalg , P 7→ t∗PL ⊗ L−1 for some L over A(kalg).

An abelian variety equipped with a polarisation is called a polarised abelian variety
(PAV). We will denote it by (A,L), where L is the line bundle inducing the polarisation.

A polarisation is called principal if it is an isomorphism.

Remark 2.27. If A/k is an abelian variety, let D ∈ Div(A)(k) be a k-rational divisor.
This defines a line bundle LD = O(D) on A. Then the map λLD

is a polarisation on
A. If D has degree 1, it is a principal polarisation.
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Definition 2.28. A pair (A,L) where A is an abelian variety and λL is a principal
polarisation on A is called a principally polarised abelian variety (PPAV).

Remark 2.29. First note that, if D =
∑

i ni(Pi) is a divisor, then t∗PD =
∑

i ni(Pi−P ).
In particular, t∗P ((0E)) = (−P ). The translation map brings a minus sign on divisors.
Also, if D induces L = LD, then t∗PL is induced by t∗PD.

Consider the map λ(0E) : P 7→ [(P ) − (0)] defined in Theorem 1.43, and let D =
(0E). The map −λ(0E) : P 7→ [(0E) − (P )] = [(−P ) − (0E)] = t∗PD −D is a principal
polarisation induced by LD. The map λ(0E) is not actually a polarisation: it would
be induced by L−(0E), because of the sign issue above, but this invertible sheaf is not
ample. Indeed, we have

λL−(0E)
(P ) = t∗PL−(0E) ⊗ L−1

−(0E) = L−(−P )+(0E)
∼= L(P )−(0E) = λ(0E)(P ).

Definition 2.30. Let (A,L), (B,M) be PAVs and let f : A → B be an isogeny. We
say that it respects the polarisations (or it is an isogeny of PAVs) if

f∗M = L.

In terms of the polarisations, this implies f∗λM := f̂ ◦ λM ◦ f = λL.

Remark 2.31. The reason we introduce the notion of isogeny of PAVs refining the
notion of isogeny is the following. As we saw in Example 2.18, fixing a line bundle
(equivalently, fixing a polarisation) gives a way to embed an abelian variety in projec-
tive space (if the line bundle is ample). In the algorithms, our varieties will always be
represented via a projective embedding – since their points are written in coordinates
on a computer – that is, they’re equipped with a fixed polarisation. The isogenies we
want to study are the ones that respect this representation, hence the polarisation.

Polarisations are also used to define pairings on an abelian variety:

Theorem 2.32 (Weil pairing). Let A be an abelian variety and ℓ ∈ Z coprime with p.
There is a skew-symmetric, nondegenerate bilinear map

em : A[ℓ]× Â[ℓ]→ µℓ,

with µℓ = {ℓ-th roots of unity}, called the Weil pairing. If (A,L) is principally po-
larised, then we can identify A with Â, obtaining a pairing on A[ℓ]×A[ℓ] that satisfies
the properties in Definition 1.44.

2.3 Examples

We see several examples of principally polarised abelian varieties, starting from the
simplest case, elliptic curves. Where possible, since abelian varieties are projective, we
see how to embed them in projective space.
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Example 2.33. As we mentioned earlier, the abelian varieties of dimension 1 are
exactly elliptic curves, and they’re canonically principally polarised by the negative
−λ(0E) of the isomorphism of Equation (1.4).

We saw that on a given elliptic curve we can fix a projective embedding in P2(kalg)
as the projective closure of the affine curve y2 = f(x) with f a cubic polynomial having
distinct roots. Polynomials of the form f(x) = x3+ax+ b, f(x) = x(x2+Ax+1) give
the short Weierstrass model, Montgomery model respectively. The group law is given
by the chord-tangent law of Figure 1.1 and the neutral point is 0E .

Moreover, the projection

x : E ⊆ P2 → P1

(X : Y : Z) 7→ (X : Z)

induces an isomorphism of the Kummer variety KE = E/ ⟨±1⟩ to P1.

Example 2.34 (Products of elliptic curves). Let E1, . . . , Eg be elliptic curves. Then
the product E1×· · ·×Eg is an abelian variety of dimension g. The product line bundle

L = π∗1L(0E1
) ⊗ · · · ⊗ π∗gL(0Eg )

,

where πi is the projection on the i-th factor, induces a principal polarisation on the
product abelian variety. This is the product polarisation

λ = λ(0E1
) × · · · × λ(0Eg )

: E1 × · · · × Eg → Ê1 × · · · × Êg.

A product of elliptic curves can be embedded in a projective space: embed the single
components into P2, then form a product of projective planes into a single projective
space (of high dimension) via a Segre embedding.

This also happens at the level of Kummer varieties. For simplicity, set g = 2 and
let E1, E2 be elliptic curves. Then we have an embedding

E1/ ⟨−1⟩ × E2/ ⟨−1⟩ ↪→ P3

((X1 : Z1), (X2 : Z2)) 7→ (X1X2 : X1Z2 : Z1X2 : Z1Z2).

Elliptic curve products are abelian variety of dimension g, but we will see that
they’re relatively rare among higher-dimensional abelian varieties. The following con-
struction gives another class of abelian varieties, called Jacobian varieties. For more
details on this, see [Mil86b].

Definition 2.35. Let C be a smooth plane projective curve of genus g defined as the
unique smooth projective curve birational to the the projective closure of the affine
curve

y2 = f(x), f ∈ k[x], deg f = 2g + 1.

The curve C is said to be a hyperelliptic curve. Note that C comes equipped with a
canonical involution

ι : C → C
(x, y) 7→ (x,−y).

and a rational point P0 = (0 : 1 : 0).
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There is a natural construction that attaches to a hyperelliptic curve C of genus g
an abelian variety of dimension g, called the Jacobian of C.

Proposition 2.36 ([Mil86b, Theorem 1.1]). Let C/k be a hyperelliptic curve given by
a polynomial of degree 2g + 1. There exists a g-dimensional abelian variety, denoted
by JacC and called the Jacobian of C, whose K-points are

JacC(K) ∼= Pic0(C)(K).

(see Definition 2.14 for the meaning of K-rationality for divisors.)

Remark 2.37. Elliptic curves are the Jacobian varieties of themselves.

The abelian group structure on a Jacobian descends from that of the divisor group,
whereas the structure of algebraic variety comes from the following:

Fact 2.38 ([Mum84, Section 2]). For any D ∈ Div0(C) there are points P1, . . . , Pr
(unique up to reordering) with r ≤ g, Pi ̸= P0 and Pi ̸= ι(Pj) if i ̸= j, such that

D ∼ (P1) + · · ·+ (Pr)− r(P0).

This means that the divisor D is determined by the g-tuple of points (P1, . . . , Pr) up to
permutations of the coordinates. Setting Pr+1 = · · · = Pg = P0 if r < g gives a map

φg : Cg → JacC
(P1, . . . , Pg) 7→ [(P1) + · · ·+ (Pg)− r(P0)].

This map is surjective, and realises JacC as a finite quotient of the variety Cr.

So concretely, points on a Jacobian are representable as unordered tuples of points
in C. For example, when g is 2, if we have D1 = φ2(P1, P2) and D2 = φ2(Q1, Q2),
name R1, R2 the two other intersection points of the cubic through P1, P2, Q1, Q2 with
the curve C. Then [D1 + D2] = φ2(ι(R1), ι(R2)) (see Figure 2.1). This is a higher-
dimensional analogue of the chord-tangent law for elliptic curves.

Proposition 2.39 ([Mil86b, Theorem 6.6]). Let JacC be the Jacobian of a genus-g
hyperelliptic curve C, and define a map φg−1 : C

g−1 → JacC as in Equation (2.38).
The image φg−1(C

g−1) is a hypersurface W ⊆ JacC , defining a divisor Θ = (W ) called
the theta divisor of C. This divisor defines a principal polarisation on JacC .

Remark 2.40. When we work with a Jacobian, we always fix the principal polarisation
induced by the theta divisor, being a canonical choice.

As we did with elliptic curves, we would like to represent Jacobians of genus-g
hyperelliptic curves over k via some coordinate system in a projective space. In general,
the representation is going to be messy: it can be shown [CF96] that a dimension-2
Jacobian can be embedded in P15(k) as the zero locus of 72 quadratic polynomials,
which is not convenient as a representation for cryptographic purposes.
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P1

P2 Q1

Q2

−R1

−R2

R1

R2

Figure 2.1: Group law on a hyperelliptic 2-dimensional jacobian (over R)

However, we can instead embed the Kummer variety of a genus-2 curve in P3,
as the zero locus of a single quartic polynomial, which is much more practical. To
see how this is possible, we will present in the next section Mumford’s formalism of
theta functions, which will allow us to derive both efficient representations of abelian
varieties and their Kummer varieties, and efficient algorithms for their arithmetic.

In dimension 2, the examples of this section are all the PPAVs we can encounter:

Proposition 2.41. Let A be a 2-dimensional PPAV. Then it is isomorphic (over kalg)
to either the Jacobian of a curve or a product of two elliptic curves.

Proof. See [BL04, Corollary 11.8.2].

2.4 Theta groups

In this section, we start to introduce Mumford’s theory of algebraic theta functions,
coming from [Mum66]. Theta functions are a classical tool used to study the geometry
of complex abelian varieties. Mumford, that we’ll follow here, gives instead a com-
pletely algebraic treatment of the theory of theta functions, that works over any field,
and in particular for k of positive characteristic.

Once we set this framework, we’ll be able to define theta structures, constructions
giving convenient coordinate systems to represent our varieties.

Definition 2.42. Let L be an ample invertible sheaf on an abelian variety A/k. Denote
by H(L) the kernel of the polarisation λL. Its geometric points H(L)(kalg) are the
points P ∈ A such that λL(P ) is trivial. More generally,

H(L)(F ) = {P ∈ A(F ) | t∗PLF ∼= LF } if k ⊆ F ⊆ kalg.

where LF is the line bundle L⊗k F induced by the change of basis AF = A× SpecF .

From now on, we assume that L is defined by a divisor of degree deg(L) = d > 0
with p ∤ d. Such L is said to be of separable type.
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Proposition 2.43. If L is an ample invertible sheaf of separable type, then H(L) is
finite and its cardinality is #H(L)(kalg) = deg(L)2.

Proof. Proved in [MFK94, Section 6.2].

Definition 2.44. Let L be an invertible sheaf of separable type on A/k. If we write

G(L)(F ) = {(P,φ) | P ∈ A(F ), φ : LF
∼−→ t∗PLF } for k ⊆ F ⊆ kalg,

then G(L) is an algebraic group, called the theta group of L, with the composition law

(Q,ψ) ◦ (P,φ) = (P +Q, t∗Pψ ◦ φ).

Notation 2.45. Since we deal with sheaves of separable type, we will usually identify
our algebraic groups with their geometric points, writing H(L) = H(L)(kalg) and
G(L) = G(L)(kalg).

Notation 2.46. Let P ∈ A be a point. For a divisor D, denote DP = t∗PD − D =
(t−P )∗D −D. For example, if D = (0A), then DP = (−P )− (0A).

Remark 2.47. The definition of a theta group can be rephrased in the language of
divisors. If L = LD, then H(D) = H(L) is the group of points P such that the divisor
DP is principal, and the elements of G(D) = G(L) are pairs (P, gP ), where gP is a
function with divisor DP . The pair (P, gP ) is k-rational if both P and gP are.

Proposition 2.48. The theta group G(L) fits into a short exact sequence of algebraic
groups:

1→ Gm → G(L)→ H(L)→ 0.

Here G(L) → H(L), (P,φ) 7→ P is the natural projection, whose kernel consists of
automorphisms of L, that is, multiplication by nonzero constants in Gm.

Proposition 2.49. The theta group G(L) acts on the vector space of global sections
Γ(A,L), making Γ(A,L) an irreducible G(L)-module, via

(P,φ) ⋆ s = t∗−P (φ(s)).

The scalars Gm in G(L) act on Γ(A,L) as multiplication characters.

In the language of divisors, if gP is above P and has DP = t∗PD−D as divisor and
s is a global section of LD, then gP ⋆ s = (s/gP )(· − P ), that is again a section of LD.

Proof. This is well-defined: if s is a global section of L, then φ(s) is a global section
of t∗PL, and t∗−P (φ(s)) is a global section of L again. It is an action because

(Q,ψ) ◦ (P,φ) ⋆ s = t∗−Q−P (t
∗
Pψ ◦ φ(s)) = t∗−Qψ ◦ t∗−P (φ(s)) = (Q,ψ) ⋆ ((P,φ) ⋆ s).

Irreducibility of the representation is shown in [Mum66, §1, Theorem 2].
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Example 2.50. As the simplest example, consider an elliptic curve E/k. Let D =
(0E) be the degree-1 divisor defining the principal polarisation. Then H(D) is trivial:
indeed, DP = (−P )− (0E) is never principal when P ̸= 0E . The theta group G(D) ∼=
Gm consists of just the constants.

Example 2.51. Consider again an elliptic curve E/k, say it’s in Montgomery form,
just to fix some projective coordinates (X : Y : Z). Consider now the degree-2 divisor
D = 2(0E). The associated line bundle L = LD has global sections generated by the
x-line coordinates X,Z.

Now H(D) = E[2]. Indeed, DP − D = 2(−P ) − 2(0) is principal if and only if
2P = 0, that is, P ∈ E[2].

A theta-group element over a point T of order 2 is of the form gT = λ · (x− x(T ))
for some λ ∈ k∗, with x = X/Z (see example 1.41). If we take T to be the order-2
point (0 : 1) always present on a Montgomery x-line (see Remark 1.16), then we have
gT = λX/Z.

Moreover, by Proposition 1.20 we have (t∗TX, t
∗
TZ) = (Z,X) up to a constant.

The function gT defines an isomorphism between L and t∗TL inducing an action on
the global sections Γ(A,L) = ⟨X,Z⟩. Indeed we have

(T, gT ) ⋆ X = t∗T (X/gT ) = λ−1t∗TZ = λ−1X,

(T, gT ) ⋆ Z = t∗T (Z/gT ) = λ−1(X/Z) ·X.

The action on sections in turn descends to an action on the Kummer line:

(T, gT ) ⋆ x(P ) = ((T, gT ) ⋆ X(P ) : (T, gT ) ⋆ Z(P )) = (Z : X)(P ) = x(P + T ).

The action of gT on a basis B of global sections of an ample line bundle L induces the
translation-by-T map on the projective coordinates given by B.

More generally, if T = (XT : ZT ) is any 2-torsion point, Proposition 1.20 gives

((T, gT ) ⋆ X, (T, gT ) ⋆ Z) = (λ(XTX + ZTZ), λ(ZTX +XTZ))

for some common scalar λ.

We point out another piece of structure induced by the theta group on rational
torsion subgroups of an abelian variety.

Proposition 2.52 (Commutator pairing). The surjection G(L) → H(L) induces a
pairing eL on H(L), called the commutator pairing, that is skew-symmetric, nonde-
generate, and has values in Gm.

The commutator pairing gives H(L) a structure of symplectic group: H(L) =
K1(L)⊕K2(L), one dual to the other via the pairing:

K2(L)
∼−→ Hom(K1(L),Gm) = K̂1(L)

Q 7→ eL(·, Q)
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Proof. The pairing is constructed as follows. For P,Q ∈ H(L), let gP , gQ be respective
lifts in G(L). These lifts can be chosen with a degree of freedom, that is, up to a scalar
in Gm. We can see then that the quantity

eL(P,Q) = gP gQg
−1
P g−1

Q

is independent of the choice of P,Q, and defines a skew-symmetric pairing eL : H(L)×
H(L)→ Gm. Nondegeneracy is shown in [Mum66, §1, Theorem 1].

Lemma 2.53. Let L be an ample separable line bundle, n ∈ Z with char(k) = p ∤ n.
Then H(Ln) = [n]−1H(L) and H(L) = [n]H(Ln).

Proof. By the Theorem of the Square 2.24, we have

λLn(P ) = t∗PLn ⊗ L−n = (t∗PL ⊗ L−1)n ∼= t∗[n]PL ⊗ L
−1 = λL([n]P ).

It follows H(Ln) = kerλLn = kerλL ◦ [n] = [n]−1H(L). In particular, [n]H(Ln) ⊆
H(L), and the converse inclusion is true because A is n-divisible (since p ∤ n).

Example 2.54. Let (A,L0) be a principally polarised abelian variety. Since λL0

is an isomorphism, H(L0) is trivial. Then by the above lemma H(Ln0 ) = A[n] ∼=
(Z/nZ)g ⊕ (Z/nZ)g. One can show that the commutator pairing on Ln0 coincides with
the Weil pairing on A[n].

2.5 Theta structures

We are now ready to define theta structures on PAVs (A,L). They are a way to find
a convenient coordinate system for A where the torsion points H(L) are in a special
position with lots of symmetries, and the theta group acts on these coordinates in a
simple way. Later, once we bring isogenies and group arithmetic into the picture, we
will see how using theta structures allows for efficient algorithms.

We are going to define an abstract analogue of G(L), called the Heisenberg group.
It is an object that summarises the group-theoretic properties of the theta group G(L).

Definition 2.55. Let δ = (d1, . . . , dr) be a sequence of positive integers, such that
di+1 | di, dr > 1.

Let K1(δ) =
⊕r

i=1(Z/diZ) and fix a scalar product on K1(δ) by

⟨(a1, . . . , ar)|(b1, . . . , br)⟩ =
∏r

i=1
ζaibii mod di, ζi a di-th root of unity.

Define K2(δ) = K1(δ), isomorphic to K̂1(δ) = Hom(K1(δ), k
alg) via the pairing ⟨·, ·⟩.

Finally let H(δ) = K1(δ)⊕K2(δ). We have an analogue of the commutator pairing on
H(δ), defined by

eδ((t1, t2), (t
′
1, t

′
2)) :=

〈
t1|t′2

〉 〈
t′1|t2

〉−1
.
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Let G(δ) be the group (kalg)∗ ×K1(δ)×K2(δ) equipped with the group law

(λ, t1, t2) · (λ′, t′1, t′2) = (λλ′
〈
t1|t′2

〉
, t1 + t2, t

′
1 + t′2).

The group G(δ) is called the Heisenberg group.

Definition 2.56. Let L be an ample line bundle. We know there is some symplectic
decomposition H(L) ∼= K1(L)⊕K2(L) with K1(L) ∼= K2(L) ∼=

⊕r
i=1(Z/diZ), di+1|di,

dr > 1. We say that L is of level δ = (d1, . . . , dr).

Observe that the construction of the Heisenberg group mimicked the one of the
theta group. Then given L, once we choose a symplectic decomposition of H(L), we
have a commutative diagram

1 (kalg)∗ G(δ) H(δ) 0

1 (kalg)∗ G(L) H(L) 0

ΘL ΘL

where ΘL is a symplectic isomorphism, meaning that ΘL(Ki(δ)) = Ki(L) and

eδ((t1, t2), (t
′
1, t

′
2)) = eL(ΘL(t1, t2),ΘL(t

′
1, t

′
2)).

Definition 2.57. Let ΘL be the central isomorphism G(L) ∼−→ G(δ) in the above
diagram. This is called a theta structure of level δ on A.

Remark 2.58. Given a polarised abelian variety (A,L), different theta structures can
be associated with it. Two level-δ structures ΘL,Θ

′
L on A differ by an automorphism

of the Heisenberg group. In practice, fixing a theta structure amounts to fixing a
numbering of the di-torsion points of A (hence a symplectic decomposition) and, for
each of these points P = ΘL(i, j), a “privileged” lift gP = ΘL(1, i, j) in G(L).

Proposition 2.59 ([Mum66, §1, Proposition 3]). The group G(δ) has a unique irre-
ducible representation where scalars in Gm act by their multiplication character. This
representation is V (δ) = {g : K(δ)→ kalg} where the action is given by

(2.3) ((λ, t1, t2) ⋆ g)(i) = λ ⟨i|t2⟩ g(i+ t1).

The vector space V (δ) admits a canonical basis given by the Kronecker delta functions
(δi)i∈K(δ) on K(δ).

Both G(L) and G(δ) have unique irreducible representations where (kalg)∗ acts as
multiplication. The theta structure G(δ)

∼−→ G(L) induces an isomorphism of these
representations β : V (δ)→ Γ(A,L). In practice, the canonical basis of V (δ) induces a
basis of Γ(A,L) made of global sections of L.
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Definition 2.60. Let (A,L) be a PAV with a theta structure ΘL of level δ. For
i ∈ K1(δ), let θi = β(δi). We call θi an (algebraic) theta function on L. The functions
(θi)i∈K1(δ) form a kalg-basis of Γ(Akalg ,L).

Pushing the action (2.3) via the isomorphism β to Γ(A,L), we get the action of
G(L) on the theta functions:

Θ(λ, t1, t2) ⋆ θi = λ ⟨i|t2⟩ θi+t1 .

Projective embeddings

Notation 2.61. If L is very ample and ΘL is a theta structure, then the theta functions
determine an embedding of A in projective space. We’ll denote it by

(2.4) ΦΘL : A ↪→ Pd1···dr−1, P 7→ (θi(P ))i∈K(δ).

Notation 2.62. In our cases of interest, we usually deal with PAVs of the form (A,L =
Ln0 ) where L0 is principal and n is a small integer. In this case, we have H(L) = A[n],
K1(δ) = (Z/nZ)g, and a theta structure on L is simply said to be of level n.

If L0 gives a principal polarisation, via the line bundle Ln0 we can describe A using
ng coordinates, when n ≥ 3 (see Remark 2.19). To reduce even further the number of
coordinates (in view of efficiency), we’d like to understand what happens when n = 2.
Unfortunately, L = L20 of level 2 is not very ample. However, under certain symmetry
conditions, it lets us describe coordinates on the Kummer variety KA = A/ ⟨−1⟩. This
means, instead of embedding the whole A in PN , we can represent points of A up to
sign much more efficiently.

Definition 2.63. We say that a line bundle L on A is symmetric if [−1]∗L = L, and
totally symmetric if there is a line bundle M on the Kummer variety KA such that
L = π∗M, with π : A→ KA the canonical projection.

Example 2.64. Let E be an elliptic curve, let L = L2(0E) be the line bundle whose
global sections are generated the Weierstrass coordinates X,Z. Then L is totally
symmetric, since X,Z generate the space of global sections on KE .

Lemma 2.65 ([Mum66, page 308]). Let L be totally symmetric. There is an auto-
morphism δ−1 of G(L) making the following diagram commute:

1 (kalg)∗ G(L) H(L) 0

1 (kalg)∗ G(L) H(L) 0

δ−1 [−1]

and an analogue D−1 on G(δ).

Definition 2.66. Let L be totally symmetric. A theta structure ΘL is called symmetric
if ΘL ◦D−1 = δ−1 ◦ΘL.
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Finally, we have the necessary tools to embed Kummer varieties:

Proposition 2.67. If (A,L0) is a g-dimensional geometrically simple PPAV, L = L20
is totally symmetric and ΘL is a symmetric theta structure of level 2, then the theta
functions determine an embedding

ΦΘL : KA ↪→ P2g−1.

Remark 2.68. If instead A is not simple, this does not necessarily hold. For example,
if A = E1 × E2, and we fix a level-2 theta structure on each Ei giving theta functions
(θEi

0 , θEi
1 ), then the Segre-like map

(P,Q) 7→ (θE1
0 (P )θE2

0 (Q), θE1
0 (P )θE2

1 (Q),

θE1
1 (P )θE2

0 (Q), θE1
1 (P )θE2

1 (Q))

is not an embedding of A/ ⟨−1⟩ into P3, but of E1/ ⟨−1⟩×E2/ ⟨−1⟩. We saw a similar
phenomenon with Montgomery x-lines, see the end of Example 2.34. These coordinates
are indeed theta functions induced by the product theta structure, see Lemma 3.18.

Theta-null point and torsion points

Definition 2.69. Let Φ: A → Png−1 be the canonical projective embedding deter-
mined by a theta structure ΘL of level n on A. The theta null point of A is the image
of the neutral point, that is, Φ(0A).

A good feature of theta structures is that they put H(L) in a special position, such
that once we know the theta null point, we immediately know the coordinates of all
T ∈ H(L).

Definition 2.70. Let P ∈ A(k) be a rational point. The fiber L(P ) of L at P is
isomorphic to k, but not canonically. Fix ΛP : L(P )

∼−→ k an isomorphism. This is
called a rigidification of L at P .

Remark 2.71. Given a section s ∈ Γ(A,L), a rigidification ΛP determines a value
s(P ) = ΛP (s(P )) ∈ k. In particular, if ΘL is a level-n theta structure, then ΛP
induces well-defined affine coordinates for P as P := (θi(P ))i∈K1(δ) ∈ kn

g
. Conversely,

an affine lift P of ΦΘL(P ) determines a rigidification ΛP .

Proposition 2.72. Let (A,ΘL) be a PAV equipped with a theta structure of level n.
An affine lift 0A of the theta null point uniquely determines affine coordinates T for
all T ∈ H(L), where

θi(T ) = ⟨i|t2⟩−1 θi−t1(0A) if T = ΘL(t1, t2).

Proof. Fix (T, φT ) = ΘL(1, t1, t2) ∈ G(L) a theta group element above T . Let Λ0 the
rigidification induced by 0A. Then ΛT = Λ0 ◦ φ−1

T (0A) : L(T ) → k is a well-defined
rigidification of L at T . In coordinates, we have

θi(T ) = ΛT (θi) = Λ0(φ
−1
T (θi)) = Λ0(ΘL(1,−t1,−t2) ⋆ θi)(0) = ⟨i|t2⟩ θi−t1(0A).
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Remark 2.73. More generally, if we consider a point P ∈ A(k) and fix a rigidification
at P , by the same reasoning we can translate it by a point in H(L):

θi(P + T ) = ⟨i|t2⟩ θi−t1(P ), T = ΘL(t1, t2).

2.6 More examples

Let’s first see what theta structures of different levels in dimension 1 look like.

Example 2.74. Let E be an elliptic curve. The level-2 line bundle L = L2(0E) is
totally symmetric. Any symmetric ΘL gives an isomorphism

E/ ⟨−1⟩ ∼−→ P1

P 7→ (θ0(P ) : θ1(P ))

Let (a : b) be the theta null point. Then the two torsion is

E[2] = E[2]/ ⟨−1⟩ = {0E = (a : b), T1 = (b : a), T2 = (a : −b), T1 + T2 = (−b : a)}

with K1 = ⟨T1⟩, K2 = ⟨T2⟩ factors of a symplectic decomposition of H(L) = E[2].
Note that, if the theta null point is k-rational, all the 2-torsion is.

Like in Proposition 1.20, given a point P = (X : Z) ∈ KE , the translation by a
special 2-torsion point T1 acts as permutation of the coordinates: P + T1 = (Z : X).

Definition 2.75. This model of x-line for E is called a theta Kummer line.

Remark 2.76 (Montgomery-theta isomorphism). As the similarities suggest, a Mont-
gomery curve and a theta-Kummer line are essentially the same model up to a linear
change of variables. In a Montgomery curve, there is a canonical 4-torsion point
T ′ = (1 : −1) lying above T = 2T ′ = (0 : 1). Let S = (r : s) ∈ E[4] be another
4-torsion point such that (S, T ) is a symplectic basis of E[4]. In [Rob24c, Appendix
A] it is shown that the following map is an isomorphism from the x-only Montgomery
model on E to a theta Kummer line having as theta null point (r + s : r − s).

(X : Z) ∈ P1 7→ (θ0 = (r + s)(X − Z) : θ1 = (r − s)(X + Z)) ∈ P1.

Example 2.77 ([Mum66, §5.b]). If (E,L) is an elliptic curve with a line bundle of level
δ = 3, we get a structure with marked rational 3-torsion. It determines an embedding
of E as the cubic curve X3 + Y 3 + Z3 − µXY Z in P2, for some µ with µ3 ̸= 1.

Example 2.78 ([Mum66, §5.c]). In level n = 4, we get a system of 4 projective
coordinates describing points on an elliptic curve. As a general fact, when 4|n, the
image of the projective embedding into Png−1 is an intersection of quadratic equations.

In the case of an elliptic curve E, we retrieve a Jacobi intersection model, describing
the curve as intersection of two quadrics in P3.

Let us now turn to dimension 2.
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Example 2.79 ([Mum66, §5.d]). Let A be a geometrically simple abelian variety of
dimension g = 2. Up to isomorphism, it is the Jacobian of a genus-2 hyperelliptic curve
C (see Proposition 2.41), with theta divisor ΘC . Fix a symmetric theta structure of
level 2 for the totally symmetric L = L2(ΘC). This induces a projective embedding of
the Kummer surface KA in P3, so that points on KA are described by four projective
coordinates (θ00, θ01, θ10, θ11) in P3.

The image of this projective embedding is a surface in P3 which has 16 singular
points – the image points of the 2-torsion A[2] – and is defined by an irreducible quartic
equation.

Let (a : b : c : d) = 0A be the theta null point on the Kummer variety.
As in Example 2.74, the 2-torsion has a special form: A[2] = K1(L)⊕K2(L), with

K1 = ⟨(b : a : d : c), (c : d : a : b)⟩ , K2 = ⟨(a : −b : c : −d), (a : b : −c : −d)⟩

Like in dimension 1, by Proposition 2.72, translation by points of K1 acts on
Kummer points as a permutation of the coordinates, whereas points of K2 act as a
change of sign on some of the coordinates.



Chapter 3

Arithmetic on theta structures

In Chapter 2 we presented Mumford’s theory of algebraic theta functions on a g-
dimensional polarised abelian variety A over k equipped with an ample line bundle L,
and we began to see how theta structures give an explicit description ofA as a projective
variety. In this chapter, we will analyse more precisely the algebraic relations satisfied
by the theta functions. Studying how theta functions on a line bundle L and its square
L⊗2 interact with each other, we’ll be able to derive algorithms to compute the group
law on A. The same theory lets us describe isogenies between abelian varieties: given
a theta model for (A,L) and a subgroup K ⊆ H(L) of the torsion underlying the
theta group, we get an algorithm to compute the isogeny φ : A→ A/K in the sense of
Problems 1.32 and 1.33.

3.1 Isogeny theorem

Let us introduce the setting where we will work thoughout the chapter.
Let (A,L) and (B,M) be polarised abelian varieties of the same dimension g,

where L,M are separable ample line bundles. Let f : A → B be a separable isogeny
of polarised abelian varieties with kernel K = ker(f). As we saw in Definition 2.30,
this means that there is an isomorphism α : f∗M ∼−→ L.

Definition 3.1. K = ker f is a finite group, say K ∼= Z/d1Z⊕ · · · ⊕ Z/drZ. Then we
say that f is a (d1, . . . , dr)-isogeny. In practice, in the sequel, we will be interested in
(ℓ, . . . , ℓ)-isogenies, also called ℓ-isogenies for brevity.

Remark 3.2. If f : (A,L)→ (B,M) is an isogeny of PAVs, thenK = ker f is necessarily
a subgroup of H(L). In fact, for all Q ∈ K, we have an isomorphism

t∗Qα : t
∗
Qf

∗M = f∗M ∼−→ t∗QL,

because f ◦ tQ = f . Consequently,

ψQ = t∗Qα ◦ α−1 : L ∼−→ t∗QL

is an isomorphism, and (Q,ψQ) is an element of the theta group G(L).

35
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Proposition 3.3. Let f : (A,L) → (B,M) be an isogeny of PAVs with kernel K.
There is a subgroup K̃ ⊆ G(L) isomorphic to K via the restriction of the projection
map G(L)→ H(L).

Conversely, given a subgroup K ⊆ H(L), if there exists a lift K̃ of K in G(L), then
there exists a polarised variety (B,M) such that f : (A,L)→ (B,M) is an isogeny of
PAVs with kernel K. Such a lift exists if and only if K is isotropic with respect to the
commutator pairing eL.

Definition 3.4. A subgroup K̃ ⊆ G(L) such that the natural projectionG(L) π−→ H(L)
restricts to an isomorphism K̃

∼−→ π(K̃) is said to be a level subgroup.

Proof of Proposition 3.3. If f is an isogeny of PAVs and K is its kernel, the subset
K̃ = {(Q,ψQ) | Q ∈ K} ⊆ G(L), where ψQ was defined in Remark 3.2, is a subgroup
isomorphic to K via the projection map (Q,ψQ) 7→ Q.

The converse comes from Grothendieck’s descent theory, see [Mum66, §1, Propo-
sition 1]. The fact that K must be eL-isotropic follows from the commutativity of
K̃ ∼= K, see [Mum66, p. 293].

Theorem 3.5 (Mumford’s Isogeny theorem). Let f : (A,L) → (B,M) be an isogeny
of PAVs, and K̃ a corresponding level subgroup in G(L). The following holds:
(i) f−1(H(M)) ⊆ H(L).
(ii) The centraliser Z(K̃) of K̃ in G(L) equals Z ′ := {(P,φ) ∈ G(L) | f(P ) ∈ H(M)}
(iii) There is a canonical isomorphism G(M) ∼= Z(K̃)/K̃ .

Proof. Fix an isomorphism α : f∗M→ L.
(i) Fix Q = f(P ) ∈ H(M) and an isomorphism ψQ : t∗QM

∼−→M. The composition

φP : L α−1

−−→ f∗M
f∗ψQ−−−→ f∗t∗QM = t∗P f

∗M
t∗Pα−−→ t∗PL

is an isomorphism, so P ∈ H(L).
(ii) By general descent theory, if Q = f(P ) ∈ B, the line bundle M is defined

identifying
L φ−→ t∗TL for all (T, φ) ∈ K̃.

and similarly t∗QM comes from the identification t∗PL
t∗Qφ−−→ t∗P+TL. Isomorphisms

φP : L → t∗PL “descend” to M if and only if they commute with these identifi-

cations, that is, if for (T, φ) ∈ K̃ the following commutes:

L t∗PL

t∗TL t∗P+TL.

φP

φ t∗Pφ

t∗Tφ

This means that φP descends to M, that is, induces a theta group element
(Q,ψQ) above Q, if and only if it is in the centraliser of K̃.
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(iii) Given (P,φP ) ∈ Z ′, the isomorphism (t∗Pα)
−1 ◦ φ ◦ α : f∗M→ f∗t∗QM is of the

form f∗ψQ with Q = f(P ) and (Q,ψQ) ∈ G(M), by the descent theory sketched
above. Then (P,φP ) 7→ (Q,ψQ) is a well-defined surjective map Z ′ → G(M),

whose kernel is K̃.

The following lemma relates the degrees of the line bundles of isogenous PAVs, and
will be important to us:

Lemma 3.6 ([Mum66, p. 291]). If f : (A,L) → (B,M) is an isogeny of PAVs with
kernel K, then degL = #(K) · degM.

Remark 3.7. Usually, when dealing with abelian varieties algorithmically, we’ll work
“in level n”, meaning that every variety A will be equipped with a line bundle L of level
n inducing a polarisation. This way A – or its Kummer variety KA – will be realised
projectively as a subvariety of Png−1 and its points can be represented as k-vectors of
ng coordinates. Usually, L = Ln0 where L0 is a principal polarisation.

As a consequence of the above lemma, however, if we’re given (A,L) of level n,
we cannot directly compute a nontrivial isogeny to some (B,M) of level n. It won’t
be an isogeny of PAVs because it won’t respect the polarisation degrees. If we want
to compute an ℓ-isogenies from A to B, we should first derive a description of (A,Lℓ)
from our knowledge of (A,L) (“raise” the level from n to ℓn), and then compute an
isogeny of PAVs (A,Lℓ)→ (B,M). The pattern is the following:

level ℓn (A,Lℓ)

level n (A,L) (B,M)

f

Isogenies and theta structures

To make the description of isogenies more explicit, we see how isogenies of PAVs relate
to theta structures.

We look back at Problems 1.32 and 1.33. In our isogeny computations, we are
given a theta structure of level n on a PAV (A,L,ΘL), and a subgroup K ⊆ H(L) that
will be the kernel of an isogeny f . We want to compute a theta structure ΘM for the
codomain variety B = A/K with a suitable polarisationM (so that f is an isogeny of
PAVs), and relate the theta coordinates of A to those of B.

We need a notion of “compatibility” between two theta structures on A and B, to
refine even more the notion of isogeny of PAVs. We start by recalling the following:

Remark 3.8. A theta structure ΘL induces a canonical section sL : H(L) → G(L)
that sends P = ΘL(t1, t2) to ΘL(1, t1, t2). In particular, given any isotropic subgroup
K ⊆ H(L), there is a canonical level subgroup K̃ = sL(K).

Definition 3.9. The level subgroup K̃ defined by an isogeny of PAVs f : (A,L,ΘL)→
(B,M) is said to be compatible with ΘL if it respects the symplectic structure induced
by sL, that is, if K̃ = (K̃ ∩ K̃1(L))⊕ (K̃ ∩ K̃2(L)), with K̃i(L) = sL(K1(L)).
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We say that the theta structures ΘL,ΘM are compatible with f if the quotient map
αf : Z(K̃)↠ G(M) sends K̃i(L) ∩ Z(K̃) to K̃i(M) for i = 1, 2.

Indeed, not all theta structures on (B,M) are compatible with the isogeny f .

Theorem 3.10 (Isogeny theorem with theta structures). Let f : (A,L,ΘL)→ (B,M)
be an isogeny of PAVs with kernel K ∼= K1 ⊕ K2, where L (resp. M) is of level δL
(resp. δM), Ki ⊆ Ki(L). Define a level subgroup K̃ = sL(K), so that it’s automatically
compatible with ΘL. Let K⊥ be the orthogonal complement of K in H(L) with respect
to the commutator pairing, and decompose it as K⊥ = K⊥,1⊕K⊥,2. Note that K ⊆ K⊥

since K is isotropic.
The set of theta structures (B,ΘM) of level δM compatible with (f,ΘL) is in bijec-

tion with the set of isomorphisms σ : K⊥,1/K1 → K1(δM).
Fix one compatible ΘM and the corresponding isomorphism σ. Also, let σ : K⊥,1 →

K1(δM) be the projection induced by σ. There exists a factor λ ∈ (kalg)∗ such that for
all i ∈ K1(δL), we have

(3.1) f∗θMi = λ
∑

j∈ΘL
−1

(σ−1({i}))

θLj

where (θLi )i∈K1(δL), (θ
M
i )i∈K2(δM) are the bases of theta functions induced by ΘL, ΘM

respectively.

Proof. This statement is proved in [Mum66, §1, Theorem 4].

Example 3.11 (3-isogeny of elliptic curves in position K2). Let E be an elliptic curve
equipped with a theta structure ΘL of level 6. Let E[6] = ⟨S1, S2⟩ with S1 = ΘL(1, 0)
and S2 = ΘL(0, 1) independent 6-torsion points induced by the theta structure.

We have Ki(L) = ⟨Si⟩. Let T2 = [2]S2, and let f : E → E′ be the 3-isogeny of
kernel K = ⟨T2⟩ = [2]K2(L). By Proposition 3.6, the codomain curve (E′,M) must
be equipped with a theta structure of level δ = 2.

We want to apply the above theorem, knowing that the kernel is in position K =
[2]K2(L), corresponding to the subgroup ⟨0⟩ × ⟨2⟩ ⊆ H(6) = (Z/6Z)2. Its orthogonal
via the pairing eδ is the subgroup ⟨3⟩ × ⟨1⟩. More precisely, we have K1 = {0E},K2 =
K, where Ki = K ∩Ki(L), and K⊥ = K⊥,1 ⊕K⊥,2 = [3]K1(L)⊕K2(L).

In particular, there is a unique isomorphism

σ : K⊥,1/K1 = [3]K1(L)/{0E} ∼= 3Z/6Z ∼−→ K1(δM) ∼= Z/2Z

(namely, i 7→ i/3), and this induces theta functions (θM0 , θM1 ) such that:

θMi (f(P )) = λ
∑

j∈ΘL
−1

(σ−1({i}))

θLj = θL3i for i = 0, 1, for some λ.

In fact, representing P and f(P ) in coordinates, we have:

P = (θL0 (P ) : · · · : θL5 (P )) = (X0 : X1 : X2 : X3 : X4 : X5), f(P ) = (X0 : X3).
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Example 3.12 (3-isogeny of elliptic curves in position K1). Keep the notations of the
previous example: let E be an elliptic curve equipped with a theta structure ΘL of
level 6, with induced torsion E[6] = ⟨S1, S2⟩ = K1(L)⊕K2(L).

This time, let T1 = [2]S1, and let f : E → E′ be the 3-isogeny of kernel K = ⟨T1⟩ =
[2]K1(L). We find theta coordinates of level 2 for the codomain curve (E′,M).

Applying the isogeny theorem, using now K = [2]K1(L), we get

K1 = K ∩K1(L) = K = [2]K1(L),
K⊥ = K1(L)⊕ [3]K2(L), so K⊥,1 = K1(L).

Again, there is a unique isomorphism σ : K⊥,1/K1
∼= (Z/6Z)/(2Z/6Z) ∼−→ K1(δM) ∼=

Z/2Z, namely (i mod 6) 7→ (i mod 2). The induced theta functions (θM0 , θM1 ) satisfy:

θMi (f(P )) = λ
∑

j∈ΘL
−1

(σ−1({i}))

θLj = θLi + θLi+2 + θLi+4 i = 0, 1.

In coordinates:

PL = (X0 : X1 : X2 : X3 : X4 : X5), f(P )M = (X0 +X2 +X4 : X1 +X3 +X5).

Example 3.13. Now let’s move to dimension g = 2.

Let (A,L0) = JacC be the Jacobian of a genus-2 hyperelliptic curve over k with its
canonical principal polarisation, and suppose we’re given a theta structure ΘL of level
4 on A. Now consider the symplectic basis A[4] = ⟨U1, U2, S1, S2⟩ induced by the theta
structure. Let Ti = [2]Si, i = 1, 2, and consider the (2, 2)-isogeny f : A → B having
kernel K = ⟨T1, T2⟩ = [2]K2(L). As in Example 3.11, there is a unique level-2 structure
ΘM on B compatible with the isogeny, and its coordinates satisfy the relation

(θM00 (f(P )) : θ
M
01 (f(P )) : θ

M
10 (f(P )) : θ

M
11 (f(P ))) =

(θL00(P ) : θ
L
02(P ) : θ

L
20(P ) : θ

L
22(P ))

where, again, i ∈ (Z/2Z)2 7→ 2i ∈ (Z/4Z)2 is the canonical embedding.

3.2 The differential addition law

In this paragraph, we will focus on the group law of an abelian variety A. We will be
able to compute it explicitly in coordinates using theta functions. More precisely, using
the isogeny theorem, we will get a differential addition algorithm, as in Algorithm 1:
given coordinates of two points P,Q ∈ A and their difference P − Q, we will be able
to compute the coordinates of P +Q.
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Symmetric theta structures

In Definition 2.66 we defined symmetric theta structures on totally symmetric line
bundles, seeing that symmetric theta structures of level 2 allow us to describe Kummer
varieties in projective coordinates. We see now that symmetric theta structures have
a much more powerful use: they let us relate the theta functions of a line bundle L
to those of its powers L2m , and this will eventually let us obtain algorithms for the
explicit computation of arithmetic operations on A and 2-isogenies.

As in the previous section, we need a notion of compatibility between different theta
structures.

Let ΘL : G(δ)→ G(L), with δ = (n, . . . , n), be a theta structure of level n on a PAV
(A,L). Recall that, basically by definition, it induces an isomorphism ΘL : (Z/nZ)g ×
(Z/nZ)g → H(L) = A[n]. This isomorphism gives us a numbering of the n-torsion
points, and a symplectic basis of H(L) as follows:

H(L) = K1(L)⊕K2(L) = ⟨S1, . . . , Sg⟩ ⊕ ⟨U1, . . . , Ug⟩ .

where we denote Si = ΘL(ei, 0) and Ui = ΘL(0, ei), with ei being the i-th standard
basis vector of (Z/nZ)g. Here Kj(L), j = 1, 2 are two eL-isotropic subgroups and their
generators satisfy eL(Si, Uj) = δij with δij the Kronecker delta.

Now, if we have a theta structure ΘL and we want another structure on L2 to be
compatible with ΘL, we need to impose that the numbering of the 2n-torsion points
of A induced by Θ2

L is compatible with the numbering of the n-torsion points induced
by ΘL. In practice, this means ΘL2 inducing a symplectic basis of the 2n-torsion
H(L2) =

〈
S′
1, . . . , S

′
g

〉
⊕
〈
U ′
1, . . . , U

′
g

〉
such that [2]S′

i = Si, [2]U
′
i = Ui.

The above paragraph tells us how two compatible theta structures on L and L2
behave on torsion points, but says nothing about their lifts in G(L), G(L2). In fact,
we’d need a more precise notion of compatibility, but that would be too technical
for our purposes: see [Mum66, §2], [Rob21, Section 2.6] for complete definitions and
proofs.

We will just state some conclusions that will be useful for our next constructions.

Theorem 3.14. Consider a PAV (A,L) where L is totally symmetric of level δ.

(i) Every symmetric theta structure ΘL2 induces a compatible theta structure ΘL.

(ii) The induced ΘL only depends on the symplectic isomorphism H(2δ)
∼−→ H(L2).

(iii) Every symmetric theta structure ΘL is induced by some ΘL2, or equivalently by
some symplectic isomorphism H(2δ)

∼−→ H(L2).
(iv) If f : (A,ΘL)→ (B,ΘM) is an isogeny of PAVs compatible with theta structures

and ΘL is symmetric, then ΘM is also symmetric.

Remark 3.15. Throughout this chapter, we will assume L is a totally symmetric am-
ple invertible sheaf on A, so that we’ll be able to choose pairwise compatible theta
structures on L⊗2m ,m ∈ N. Suppose indeed to fix such structures ΘL2m .
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Affine coordinates

Before going on with the rest of the chapter, we want to make some remarks aimed at
shifting our view towards a more computational perspective.

In this chapter, our goal is to develop algorithms giving a computational description
of the arithmetic on abelian varieties. We introduced theta structures so that we have
nice projective coordinate systems to represent points on abelian varieties. Indeed,
recall the following:

Remark 3.16. Let (A,L0) be a g-dimensional PPAV. The line bundle L = Ln0 of level
δ = n ≥ 3 is very ample. Any theta structure ΘL induces a projective embedding

ΦΘL : A ↪→ Pd1···dr−1, P 7→ (θi(P ))i∈K(δ).

If instead n = 2, the line bundle L = L20 is totally symmetric, A is geometrically simple
and ΘL is a symmetric theta structure, then it induces a map ΦΘL of the same form
as above, that embeds KA into P2g−1.

Any point of A (or its Kummer variety, if the hypotheses above hold) can be
(mathematically) represented in projective coordinates via ΦΘL , once we have all the
necessary ingredients.

However, when representing a point P ∈ A on a computer, we don’t store in memory
its projective coordinates ΦΘL(P ), but rather a certain affine lift P of the projective
point ΦΘL(P ). Rescaling the affine tuple P by some nonzero scalar λ ∈ k∗ doesn’t
change the underlying projective point (that is, it still represents P ) but concretely
gives a different tuple when stored on a computer.

Now look back at Remark 2.71. Let L be a line bundle on A and P ∈ A a
point. Fixing a rigidification of L at P is equivalent to choosing the value of one
(equivalently, every) global section s ∈ Γ(A,L) at P , denoted by s(P ), and in particular
it is equivalent to fixing an affine lift P = (θi(P ))i of ΦΘL(P ).

If moreover L is totally symmetric, ΘL is symmetric and we fix a compatible struc-
ture ΘL2 on L2, then a rigidification of L at P canonically induces one on L2 at the
same point, by the isomorphism chain (L⊗2)P ∼= (LP )⊗2 ∼= k⊗2 ∼= k. Consequently, for
example, fixing level-2 coordinates of a point P ∈ A uniquely induces level-4 coordi-
nates of the same point that are compatible with the level-2 ones.

These notations concerning the affine coordinates of a point P ∈ A will be ex-
tensively used in the following sections, and ease our exposition of the arithmetic
algorithms.

Later, we will see that affine coordinates in symmetric theta structures also interact
well with 2-isogenies and 4-isogenies (see, e.g., Remark 3.38).

The duplication formula

We want to describe the group law of an abelian variety in coordinates, making use
of theta structures and their theta functions. If we worked with affine varieties, the
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group law on the variety would translate directly to a map – the comultiplication map
– on their coordinate rings. With projective varieties, however, this doesn’t happen.

We can instead recover a coordinate description of the addition law on A studying
the variety A×A directly, via the following map:

ξ : A×A → A×A
(P,Q) 7→ (P +Q,P −Q).

The map ξ is a separable isogeny, whenever char k ̸= 2. Its kernel is ∆(A[2]), the
2-torsion points on the diagonal of A, and is isomorphic to (Z/2Z)2g.

The fact that ξ is a 2-isogeny gives us a practical way to relate theta functions on
L2 and L, respectively of level 2δ and δ, using the isogeny theorem we presented in
Section 3.1. Eventually, we’ll be able to derive algorithms for the explicit computation
of the (differential) addition law using coordinates of level δ.

Theorem 3.17. Let A be an abelian variety of dimension g, and let L be a symmetric
invertible sheaf on A. IfM is the invertible sheaf π∗1L⊗π∗2L, where πi is the projection
on the i-th component, then ξ∗(M) ∼=M⊗2.

Proof. By the see-saw principle [Mil86a, §5], to show the isomorphism ξ∗(M) ∼=M⊗2

it is sufficient to show that the two sheaves are isomorphic when restricted to the
subschemes A×{R} for all R ∈ A and {0A}×A. Consider for i = 1, 2 the morphisms

j
(i)
R : A→ A×A, j

(1)
R (P ) = (P,R), j

(2)
R (P ) = (R,P ).

Note that πi ◦ j(i)R = idA, and πi ◦ j(i)R (P ) = R for all P ∈ A if i ̸= j. This gives

(j
(i)
R )∗(M2) ∼= L2.

On the other hand, we have

(j
(1)
R )∗ξ∗M = (j

(1)
R )∗ξ∗(π∗1L ⊗ π∗2L) = (π1 ◦ ξ ◦ j(1)R )∗L ⊗ (π2 ◦ ξ ◦ j(1)R )∗L

= t∗RL ⊗ t∗−RL ∼= L2(by the theorem of the square)

and

(j
(2)
R )∗ξ∗M = (j

(2)
R )∗ξ∗(π∗1L ⊗ π∗2L) = (π1 ◦ ξ ◦ j(2)R )∗L ⊗ (π2 ◦ ξ ◦ j(2)R )∗L

= L ⊗ [−1]∗L ∼= L2(by symmetry)

as wanted.

The following theorem can be translated “in coordinates” using theta structures.
We just need to understand how to correctly set a theta structure on A×A if we have
one on A. The following lemma does the work.

Lemma 3.18 (Product theta structures, [Mum66, §3, Lemma 1]). Let (A1,L1), . . . ,
(Ar,Lr) be PAVs. Let A =

⊕r
i=1Ai with the line bundle L = π∗1L1⊗· · ·⊗π∗rLr defining

the product polarisation (where πi : A→ Ai is the i-th projection).
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� H(L) =
⊕r

i=1H(Li) and the decomposition is orthogonal w.r.t. eL.

� G(L) ∼= (
⊕r

i=1G(L))
/
{(λ1, . . . , λr) ∈ (k∗)r | λ1 · · ·λr = 1)}

� Suppose each Ai is equipped with a theta structure ΘLi of level δi. Then we
can naturally define a theta structure ΘL of level δ = (δ1, . . . , δr), such that the
canonical theta functions are

θLi = π∗1θ
L1
i1
· · ·π∗rθ

Lr
ir

for all i ∈ K1(δ1)× · · · ×Kr(δr).

For simplicity, we will denote θLi = π∗1θ
L1
i1
· · ·π∗rθ

Lr
ir

as θL1
i1
∗ · · · ∗ θLr

ir
.

Remark 3.19. Let’s look at the above lemma in coordinates, by means of Remark 3.15.
Let Pi ∈ Ai(k) be rational points for i = 1, . . . , r. Fix a rigidification of the line

bundles Li at Pi, inducing affine values θj
Li(Pi) ∈ k. The lemma reads:

θi
L
(P1, . . . , Pr) = θi1

L1
(P1) · · · θir

Lr
(Pr) for all i ∈ K1(δ1)× · · · ×Kr(δr).

Now that we know how to equip a product invertible sheaf with a theta structure,
look back at Theorem 3.17. Applying the isogeny theorem to the sheaf isomorphism
ξ∗M∼=M⊗2, we get the following corollary.

Notation 3.20. Let i = (i1, . . . , ig) ∈ (Z/nZ)g be a multi-index. We will denote by
ℓi the multi-index (ℓi1, . . . , ℓig) ∈ (Z/ℓnZ)g, that is the image of i via the canonical
embedding (Z/nZ)g ↪→ (Z/ℓnZ)g. Viceversa, if j ∈ (Z/ℓnZ)2 is in the image (we write
j ≡ 0 (mod ℓ)) then i = j/ℓ is its unique preimage.

Corollary 3.21 (Duplication formula). Let (θLi )i∈K1(δ), (θ
L2

i )i∈K1(2δ) be the theta func-
tions coming from compatible symmetric theta structures on A, and say L has level
δ = n. Remember that K1(δ) = (Z/nZ)g,K1(2δ) = (Z/2nZ)g.

Let P,Q ∈ A(k) be two rational points. Then there is a λ ∈ k∗ such that for all
i1, i2 ∈ K1(δ) and rigidifications of L at P,Q and of L2 at P ±Q the following holds:

θi1
L
(P +Q)θi2

L
(P −Q) = λ

∑
j1,j2∈(Z/2nZ)g
j1+j2=2i1
j1−j2=2i2

θj1
L2

(P )θj2
L2

(Q).

Proof (sketch). Let M = π∗1L ⊗ π∗2L. By Theorem 3.17, we have ξ∗M ∼= M⊗2 ∼=
π∗1L2⊗π∗2L2. We fix on the line bundle N := π∗1L2⊗π∗2L2 the product theta structure
given by ΘL2 on both factors, and we call it ΘN . Similarly, we fix the product theta
structure ΘM onM given by ΘL on both factors. We have

H(N ) = K1(L2)⊕2 ⊕K2(L2)⊕2 with A[2n] = H(L2) = K1(L2)⊕K2(L2),
H(M) = K1(L)⊕2 ⊕K2(L)⊕2 with A[n] = H(L) = K1(L)⊕K2(L).

We claim that, by compatibility of the theta structures on L and L2, the structures ΘN
and ΘM are compatible with the isogeny ξ. Since we didn’t give a proper definition of
compatibility, we omit this verification.
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Now, we apply the isogeny theorem to the isogeny ξ. Its kernel is K = ∆(A[2]) =
{(P, P ) | P ∈ A[2]}. Writing A[2] = [n]K1(L2) ⊕ [n]K2(L2), we get the symplectic
decomposition K = ∆([n]K1(L2)) ⊕∆([n]K2(L2)). Via the theta structure, we have
the following correspondences to subgroups of (Z/2nZ)4g (where the components are
rearranged so that the first half is K1(2δ) and the second half K2(2δ)):

Θ
−1
N (K) = {(t1, t1, t2, t2) | 2t1 = 0, 2t2 = 0},

Θ
−1
N (K1) = {(t1, t1, 0, 0) | 2t1 = 0, 2t2 = 0},

Θ
−1
N (K2) = {(0, 0, t2, t2) | 2t1 = 0, 2t2 = 0}.

Similarly, K⊥
1 corresponds to the subgroup of elements orthogonal to K2 (being con-

tained in the isotropic K1(δ), it is already orthogonal to K1):

{(x, x′, 0, 0) | ⟨x|t2⟩
〈
x′|t2

〉
=
〈
x+ x′|t2

〉
= 0 for all t2 ∈ (nZ/2nZ)g}

= {(x, x′, 0, 0) | x+ x′ ≡ 0 (mod 2)}

With some more work, one can show that the map σ : K⊥
1 → K1(δ) is defined by

ΘN (x, x′, 0, 0) 7→ ((x+ x′)/2, (x− x′)/2) ∈ (Z/nZ)2g. Finally, by the isogeny theorem,
fixing indices i1, i2 ∈ (Z/nZ)g, we get

ξ∗(θLi1 ∗ θ
L
i2) =

∑
(j1,j2)∈Θ

−1
N (σ−1){(i1,i2)}

θL
2

j1 ∗ θ
L2

j2 .

If we fix rigidifications of L at P,Q, P −Q,P +Q (which are uniquely determined up
to a scalar) we get the desired formula.

The differential addition algorithm

The duplication formula of Corollary 3.21 finally gives us an algorithm for the differ-
ential addition on an abelian variety A.

Notation 3.22. We will use the following change of variables in the sequel. Let
(θLi )i∈(Z/nZ)g be theta functions of even level 2n attached to some ΘL on A.

Let u ∈ (Z/2nZ)g and t′ ∈ (Z/2Z)g. We denote

(3.2) UL
t′,u =

∑
t∈(Z/2Z)g

〈
t|t′
〉
θLu+nt with

〈
t|t′
〉
= (−1)t1t′1+···+tgt′g .

If we fix affine evaluations θi
L
(P ) on some P , then U

L
t′,u(P ) ∈ k is well-defined as well.

Theorem 3.23 (Differential addition). Let (A,L) be a PAV, with L of level n, and
fix a theta structure ΘL on it. Let P,Q ∈ A(k) be two rational points. For R ∈
{P,Q, P −Q, 0A}, fix affine coordinates R = (θi)i∈(Z/nZ)g .
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If U
L2

i,0(0A) and θ
L
i (P −Q) are nonzero for all i ∈ (Z/2Z)g, there is an algorithm

diff add : (P ,Q, P −Q, 0A) 7→ P +Q

that returns (deterministically) affine theta coordinates of P +Q of level n given those
of P,Q, P − Q, 0A, with a complexity of O(ng) field operations.Algorithm 7 describes
the computations in level n = 2.

Definition 3.24. Specialising diff add with P = Q, we get an algorithm

dbl : P 7→ 2P

called the doubling algorithm. See Algorithm 8 for the computations in level 2.

Lemma 3.25. Let (A,L,ΘL) be of level n. Fix level-n coordinates P ,Q, P −Q, 0A.
They determine coordinates P +Q satisfying the following equations:

θ
L
(u+v)/2(P +Q)θ

L
(u−v)/2(P −Q) =

∑
t′∈(Z/2Z)g

U
L2

t′,u(P )U
L2

t′,v(Q)(3.3)

U
L2

t′,u(P )U
L2

t′,v(Q) =
1

2g

∑
t∈(Z/2Z)g

〈
t|t′
〉
θ
L
(u+v)/2+t(P +Q)θ

L
(u−v)/2+t(P −Q)(3.4)

with u, v ∈ (Z/2nZ)g, u ≡ v mod 2, t′ ∈ (Z/2Z)g.

Proof. We verify (3.3). The following chain of equalities holds:∑
t′

U
L2

t′,u(P )U
L2

t′,v(Q) =
∑
t′,t1,t2

〈
t1|t′

〉
θ
L2

u+2t1(P )
〈
t2|t′

〉
θ
L2

v+2t2(Q)

=
∑
t1,t2

θ
L2

u+2t1(P )θ
L2

v+2t2(Q)
∑
t′

〈
t1 + t2|t′

〉
(
using

∑
t′ ⟨t1 + t2|t′⟩ = 2gδt1t2

)
= 2g

∑
t

θ
L2

u+2t(P )θ
L2

v+2t(Q)

= 2gθ
L
(u+v)/2(P +Q)θ

L
(u−v)/2(P −Q)

where all the summation indices are in (Z/2Z)g. The last equality follows from the
duplication formula and the fact that the pairs (j1, j2) that satisfy (j1+j2)/2 = (u+v)/2
and (j1−j2)/2 = (u−v)/2 are exactly those of the form (u+ t, v+ t) with t ∈ (Z/2Z)g.
Replacing θ

L
i (P +Q) with (1/2g)θ

L
i (P +Q) gives the desired result.

Equation (3.4) is obtained from (3.3) similarly.

Proof of Theorem 3.23. Specialise the equations of the above lemma as follows. Use
(3.4) with u = v = 0, P = Q = 0A to get

(3.5) U
L2

t′,0(0A)
2 = (1/2g)

∑
t

〈
t|t′
〉
θ
L
t (0A)

2.
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Then (3.4) with v = 0, Q = 0A and i ∈ (Z/2Z)g, u = 2i gives:

(3.6) U
L2

t′,2i(P )U
L2

t′,0(0A) = (1/2g)
∑
t

〈
t|t′
〉
θ
L
i+t(P )

2.

Finally, use (3.3) with u = 2i, v = 0:

θ
L
i (P +Q)θ

L
i (P −Q) =

∑
t′

UL2

t′,2i(P )U
L2

t′,0(Q)

=
∑
t′

(U
L2

t′,2i(P )U
L2

t′,0(0A)) · (U
L2

t′,0(Q)U
L2

t′,0(0A))

U
L2

t′,0(0A)
2

(3.7)

The last term is computable from 0A, P ,Q, P −Q given the equations above.

Remark 3.26. We would need to make sure that UL2

t′,0(0) is always nonzero for all t′.
Usually, this is the case. To see how to treat the case when this does not hold, see
[DMPR23a, Remark 5] or [Dar24, Appendix A].

Notation 3.27. In the algorithms, we use level-2 coordinates. A point R is represented
as a vector x = (xi)i∈(Z/2Z)g with xi = θi(R). Rescaling a vector x by a scalar λ is
denoted as λx or λ · x.

The expressions of the form
∑

t∈(Z/2Z)g xt are implemented as a matrix-vector prod-
uct with the Hadamard matrix H defined by Hi,j = ⟨i|j⟩. The sum in (3.2) is then
computed as H · x. Its cost is g · 2g additions, as explained in [Dar24, Appendix D.2].

Given two vectors x, y, we denote the component-wise product as x∗y, component-
wise inversion as I(x) and component-wise squaring as S(x).

Algorithm 7 Theta differential addition on a Kummer variety

Input: Affine level-2 theta coordinate vectors P ,Q, P −Q, 0A.
Output: Affine level-2 theta coordinates P +Q.

P ′ ← H ◦ S(P ) ▷ (P ′)t′ = 2gU
L2

t′,0(P )U
L2

t′,0(0A) using (3.6)

Q′ ← H ◦ S(Q) ▷ Same but with Q

R′ ← H ◦ S(0A) ▷ (R′)t′ = 2gU
L2

t′,0(0A)
2 using (3.5)

R± ← H(P ′ ∗Q′ ∗ I(R′)) ▷ (R±)i = 2gθ
L
i (P +Q)θ

L
i (P −Q) using (3.7)

▷ We use: UL2

t′,2i = ⟨i|t′⟩UL2

t′,0 if i is in (Z/2Z)n.
P +Q← (1/2g) ·R± ∗ I(P −Q) ▷ Divide by the coordinates of P −Q
return P +Q

3.3 Riemann relations

Beyond the duplication formula, there are more general algebraic relations that are
satisfied by theta functions of level-n theta structures. In particular, theta functions
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Algorithm 8 Theta doubling on a Kummer variety

Input: Affine level-2 theta coordinate vectors P , 0A.
Output: The point 2P = dbl(P ).
P ′ ← H ◦ S(P )
R′ ← H ◦ S(0)
R′′ ← H(S(P ′) ∗ I(R′))
2P ← (1/2g) ·R′′ ∗ I(0)
return 2P

satisfy quadratic equations called the Riemann relations. Their name is due to the
classical complex theory of theta functions. These relations give information on the
arithmetic of the variety, like the duplication formula did, and let us derive more
general algorithms.

Again, we suppose to have a fixed symmetric theta structure ΘL of level δ on A.
This means L is totally symmetric; in particular, 2|δ.

Theorem 3.28 (Riemann relations). Let P1, P2, P3, P4 ∈ A(k) be rational point and R
a geometric a point satisfying P1+ · · ·+P4 = 2R. Now let Qi = R−Pi for i = 1, . . . , 4.

Let i1, i2, i3, i4 ∈ K1(δ), fix m such that
∑4

l=1 il = 2m, let jl = m − il. There are
rigidifications of L at the Pi, Qj such that for all t′ ∈ (Z/2Z)g the following equality
holds: ( ∑

t∈(Z/2Z)g

〈
t|t′
〉
θi1+t(P1)θi2+t(P2)

)( ∑
t∈(Z/2Z)g

〈
t|t′
〉
θi3+t(P3)θi4+t(P4)

)
=

( ∑
t∈(Z/2Z)g

〈
t|t′
〉
θj1+t(Q1)θj2+t(Q2)

)( ∑
t∈(Z/2Z)g

〈
t|t′
〉
θj3+t(Q3)θj4+t(Q4)

)(3.8)

Proof. The proof is a straightforward but tedious computation. The interested reader
can find it in [Rob10, Theorem 4.4.6].

Notation 3.29. If (3.8) holds, we say that the tuple (P1, . . . , P4, Q1, . . . , Q4) is in
Riemann position.

Remark 3.30. Let (P1, . . . , P4, Q1, . . . , Q4) be a tuple in Riemann position. The Rie-
mann relations (3.8) say that, if we rescale seven out of these eight coordinate vectors
by a nonzero scalar, the eighth one is uniquely determined. We can retrieve these
coordinates algorithmically, as we are going to see.

Lemma 3.31. Let ΘL be a symmetric theta structure on A. Its canonical theta func-
tions satisfy

[−1]θLi = θL−i.

Proof (sketch). Since ΘL is symmetric, the isogeny [−1] : (A,ΘL) → (A,ΘL) is com-
patible with the theta structures. We can apply the isogeny theorem in coordinates,
to get [−1]∗θLi = λθL−i for some λ ∈ k∗. Since [−1] is an involution, we get λ2 = 1. In
[Mum66, p. 331] Mumford shows λ = 1 when L is very ample.
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In what follows, we work on (A,ΘL) an abelian variety with ΘL symmetric.

Example 3.32. A tuple of the form (P , P ,−Q,Q; 0A, 0A, P +Q,P −Q) is in Riemann
position. The Riemann relations in this case yield exactly the duplication formula,
hence the algorithms diff add and dbl.

Iterating doublings and differential additions as in the Montgomery ladder, we get:

Proposition 3.33. Let m ∈ Z be a positive integer and P,Q ∈ A(k) be two rational
points. Fix level-n affine theta coordinates P ,Q, P +Q, 0A. Given this data, Algorithm
9 computes affine theta coordinates for mP +Q in time O(logm):

ladder : (m,P ,Q, P +Q, 0A) 7→ mP +Q.

If 0A is fixed, we may omit it from the expression for compactness. Specialising with
Q = 0A, we get an algorithm mult : (m,P ) 7→ mP = ladder(m,P , 0A, P , 0A).

Algorithm 9 Theta ladder and scalar multiplication

Input: Affine level-n theta coordinates P ,Q, P +Q, 0A, a positivem = 1+
∑r

i=0mi2
i.

Output: The point mP +Q = ladder(m,P ,Q, P +Q, 0A).
(R0, R1, R2)← (0A, P , P +Q) ▷ Invariant: R1 = R0 + P,R2 = R1 +Q
for i in (r, . . . , 0) do

if mi = 0 then ▷ for simplicity, omit input 0A
(R0, R1, R2)← (dbl(R0), diff add(R0, R1, P ), diff add(R2, R0, P +Q))

else
(R0, R1)← (diff add(R1, R0, P ), dbl(R1), diff add(R2, R1, Q))

return R2

Proposition 3.34. The tuple (P + Q + R,P,Q,R; 0A, Q + R,P + R,P + Q) is in
Riemann position. It follows that fixing affine coordinates of (the null point,) the
points P,Q,R and their pairwise sums determines coordinates for P + Q + R. This
can be computed via an algorithm

3WayAdd : (P ,Q,R;Q+R,P +R,P +Q; 0A) 7→ P +Q+R.

of complexity O(ng), shown in Algorithm 10 for n = 2. Its computations descend
directly from (3.8) applied to the above Riemann tuple.

Remark 3.35. More generally, iterating the construction with r points P1, . . . , Pr, we
can fix affine theta coordinates of all points Pi and pairwise sums Pi + Pj , and get
canonically some affine theta coordinates of P1 + · · ·+ Pr.

Notation 3.36. Let P = (θi(P ))i ∈ kn
g
be affine coordinates of a rational point

P ∈ A(k), and λ ∈ k∗ a nonzero scalar. We denote by λP the tuple (λθi(P ))i ∈ kn
g
.
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Algorithm 10 Theta three-way addition

Input: Affine level-2 theta coordinates P ,Q,R,Q+R,P +R,P +Q, 0A
Output: Affine level-2 theta coordinates P +Q+R.

▷ Note: we assume that I is always applied to tuples with all nonzero entries.
S1 ← H(Q ∗R)
S2 ← H(0A ∗Q+R)
S3 ← H(P +R ∗ P +Q)
S′ ← H(S2 ∗ S3 ∗ I(S1))
S ← (1/2g) · S′ ∗ I(P )
return S

The algorithms we presented so far take as input some affine coordinates of points
on the abelian variety. If for some input point P we rescale its affine coordinates P
by some scalar λ ∈ k∗, the output of the algorithms changes as well. We describe this
behaviour in the following lemma.

Lemma 3.37 (Homogeneity relations).
(i) Suppose (P1, . . . , P4, Q1, . . . , Q4) are in Riemann position. Then (λ1P1, . . . , λ4P4,

µ1Q1, . . . , µ4Q4) is in Riemann position if and only if
∏r
i=1 λi =

∏r
i=1 µi.

(ii) diff add(λPP , λQQ,λ−P −Q,λ00A) =
λ2Pλ

2
Q

λ−λ20
· diff add(P ,Q, P −Q, 0A).

(iii) 3WayAdd(λPP , λQQ,λRR, λQRQ+R, λPRP +R, λPQP +Q,λ00A) =
λQRλPRλPQλ0

λPλQλR
· 3WayAdd(P ,Q,R,Q+R,P +R,P +Q, 0A)

(iv) ladder(m,λPP , λQQ,λ+P +Q,λ00A) =
λm+λ

m(m−1)
P

λm−1
Q λ

m(m−1)
0

·ladder(m,P ,Q, P +Q, 0A).

(v) mult(m,λP ) = λm
2
mult(m,P ).

Proof. We prove some items of the lemma. The others are similar.
(i) Both sides of Equation (3.8) are linear in the coordinates of each point. If we

rescale Pi 7→ λiPi, the left hand side of the equation gets multiplied by
∏4
i=1 λi.

Analogously, the right hand side gets multiplied by
∏4
i=1 µi by the rescaling of

the Qi. The equation is preserved if and only if these two products are equal.

(ii) This follows from (3.7) similarly: both the coordinates of P and Q are squared
in the numerator and those of 0A are squared in the denominator. To retrieve
the coordinates of the P +Q, one must also divide by the coordinates of P −Q.

(iv) We prove this by induction on m. If m = 1, the statement is trivial. Suppose
it holds for j ≤ m − 1. At step i (where i goes from r down to 0), the ladder
algorithm 9 computes the points R0 = nP , R1 = (n+ 1)P , R2 = (n+ 1)P +Q
with n =

⌊
(m− 1)/2i

⌋
. By the inductive hypothesis, the rescaling of the input

points multiplies each Ri by a scalar λRi with

λR0 =
λn

2

P

λn
2

0

, λR1 =
λ
(n+1)2

P

λ
(n+1)2

0

, λR2 =
λn+1
+ λ

(n+1)n
P

λnQλ
(n+1)n
0

.
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In the final step, if the last digit is even we have R0, R1, R2 as above with m−1 =
2n. The final result is computed as R′

2 = diff add(λR2R2, λR0R0, λ+P +Q,λ00).
By (ii), this equals µ ·mP +Q with

µ =
λ2R0

λ2R2

λ+λ20
=
λ2n

2

P

λ2n
2

0

λ
2(n+1)
+ λ

2(n+1)n
P

λ2nQ λ
2(n+1)n
0

1

λ+λ20
=
λ2n+1
+ λ

(2n+1)(2n)
P

λ2nQ λ
(2n+1)(2n)
0

as wanted.

3.4 The 2-isogeny algorithm

As another immediate application of the duplication formula, we describe an algorithm
to compute (2, 2)-isogenies between principally polarised abelian surfaces. In Chapter
5, we will extend this to the computations of chains of (2, 2)-isogenies of length m.

Let (A,L), (B,M) be dimension-2 PAVs equipped with line bundles of level 2. Let
f : A → B be a (2, 2)-isogeny of PAVs, and suppose given a level-2 symmetric theta
structure ΘL on A such that ker f = K2(L) ∼= (Z/2Z)2, where A[2] = K1(L)⊕K2(L)
is the symplectic decomposition of the 2-torsion induced by the theta structure. Fix a
symmetric theta structure ΘL2 that is compatible with ΘL.

Via the duplication formula, we are able to describe ΘL2 knowing ΘL. We saw in
Example 3.13 that, if we have theta coordinates of level 4 on A, we can immediately
derive a level-2 theta structure ΘM on the codomain B. The isogeny theorem gives
the following relation between theta coordinates:

(3.9) f∗θMi = θL
2

2i for all i ∈ K1(2, 2) = (Z/2Z)2.

By the isogeny theorem (see also Example 3.13), if the kernel of our 2-isogeny f is
K = [2]K2(L), then we’ll have

(3.10) K1(M) ∼= K1(L), K2(M) ∼= K2(L2)/K2(L).

Fix the notations above for the rest of the section. As discussed in Problem 1.33,
we will describe:

� A codomain algorithm that given some information on A finds level-2 coordinates
of the theta null point 0B ∈ B. By “some information”, we mean that a list of
generators of the kernel is sufficient; however, if we know some higher torsion
points lying above the kernel generators, the algorithm becomes more efficient.

� An evaluation algorithm that takes as input level-2 coordinates 0B, P for any
P ∈ A and computes level-2 coordinates of f(P ) ∈ B with respect to the theta
structure found by the codomain algorithm.

The codomain algorithm

We begin by a simple observation:
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Remark 3.38. Let (θ
L
i (P ))i∈(Z/2Z)2 be affine coordinates of a rational point of A. By

Equation (3.9), this induces affine coordinates on the codomain θ
M
i (f(P )) = θ

L2

2i (P ).

Applying the change of variable (3.2) we get U
M
t′,0(f(P )) = U

L2

t′,0(P ). In particular, this
applies to P = 0A, f(P ) = 0B.

We want to compute 0B given our knowledge of A. We first show a relatively trivial
algorithm: suppose we know an affine coordinate vector 0A of the theta null point of
A. Without even needing the kernel generators explicitly, we can use (3.5) to get the

squared values (U
L2

t′,0(0A)
2)t′ = (U

L2

t′,0(0B)
2)t′ , that is, we get the vector (α2, β2, γ2, δ2)

with H(0B) = (α, β, γ, δ). One of these four values is nonzero, say α. Up to rescaling,
we can set α = 1 and extract square roots of the others to get (1, β, γ, δ) = 0B as
wanted. Each square root extraction has a sign ambiguity, but all eight sign choices
give isomorphic theta structures on the same variety B, by [Rob24c, Example B.3].

However, extracting square roots in finite fields is relatively expensive if compared
to additions, multiplications and inversions. If we have some extra torsion information
on A lying above the kernel of the isogeny, we can compute 0B without extracting any
square roots.

Theorem 3.39 (2-isogeny codomain algorithm on Kummer surfaces). Consider the
setup above. Suppose known affine level-2 theta coordinate vectors 0A, S1, S2 where
Si, i = 1, 2 are 8-torsion points satisfying [4]Si = Ti and such that ⟨T1, T2⟩ = K2(L)
is the kernel of the isogeny f . Let 0B be an affine lift of the theta null point of B,
where the theta structure on B is induced by ΘL2. If all the components of H(0B)
are nonzero, then Algorithm 11 computes this vector, renormalised as R = (1, β, γ, δ),
using a constant number of additions, multiplications and inversions.

Proof of correctness. Since the point Si is of 8-torsion and lies above a kernel point
of order 2, for i = 1, 2 we have that f(Si) lies in B[4]. More precisely, [2]Si lies in
K2(L2), so by (3.10) we have that Ri = [2]f(Si) ∈ K2(M) is a point underlying the
theta group ofM. By Remark 2.73, translating by these points Ri induces an action
(as a sign character) on the coordinates of the points of B: if P = (x, y, z, w), then we
get canonically

R1 + P = (x,−y, z,−w), R2 + P = (x, y,−z,−w).

We also know that f(Si) + Ri = −f(Si) since f(Si) is a point of order 4. Since
level-2 coordinates are invariant by point negation (Lemma 3.31, they’re projective
coordinates on KA), the coordinates of f(Si) assume the following form:

f(S1) = (x1, 0, z1, 0), f(S2) = (x2, y2, 0, 0),

H(f(S1)) = (x′, x′, y′, y′), H(f(S2)) = (z′, w′, z′, w′)

with (x′, y′) = (x1 + z1, x1 − z1) and (z′, w′) = (x2 + y2, x2 − y2).
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Now, we choose a rigidification ofM at 0B so that we can writeH(0B) = (1, β, γ, δ).
We can do this normalisation sinceH(0B) has all nonzero entries by assumption. Apply
Equation (3.6) to the points f(Si):

H ◦ S(S1) =
(∑

t

〈
t|t′
〉
θ
L
t (P )

2
)
t′
=
(
U

L2

t′,0(f(S1))U
L2

t′,0(0B)
)
t′
= (x′, x′β, y′γ, y′δ)

and similarly H ◦ S(S2) = (z′, w′β, z′γ,w′δ). The algorithm finally recovers 1, β, γ, δ
from the relations between H ◦ S(S1) and H ◦ S(S2).

Algorithm 11 Codomain computation of a 2-isogeny of Kummer surfaces

Input: Affine level-2 theta coordinates 0A, S1, S2 where ⟨[4]S1, [4]S2⟩ = K2(L) is the
kernel of an isogeny of PPAVs f : A→ B.

Output: Affine level-2 theta coordinates (1, β, γ, δ) = H(0B).
P1 = (x′, x′β, y′γ, y′δ)← H ◦ S(S1)
P2 = (z′, w′β, z′γ,w′δ)← H ◦ S(S2)
β ← (x′β)/x′

γ ← (z′γ)/z′

δ ← (y′δ) · γ/(y′γ)
return (1, β, γ, δ).

The evaluation algorithm

Given the codomain algorithm, we can now describe an evaluation algorithm for the
2-isogeny f . We want to compute the affine coordinates of f(P ) for any P ∈ A. As in
the rest of the section, fix compatible theta structures ΘL,ΘL2 ,ΘM, where L andM
have level 2.

Theorem 3.40 (2-isogeny evaluation algorithm on Kummer surfaces). In the notations
above, suppose given level-2 affine theta coordinates H(0B) = (1, β, γ, δ) (all nonzero)
and P for a rational point P ∈ A(k). Algorithm 12 computes some level-2 affine theta
coordinates f(P ), in a constant number of additions, multiplications and inversions.

Proof of correctness. Let 0A be the tuple of affine coordinates of 0A rescaled in such
a way that the induced coordinate vector 0B on the codomain satisfies H(0B) =
(1, β, γ, δ). Apply Equation (3.6) to get (up to a scalar factor that we’ll incorporate in
the coordinates of f(P )):

U
M
t′,0(f(P ))U

M
t′,0(0B) = U

L2

t′,0(P )U
L2

t′,0(0A)

=
∑

t

〈
t|t′
〉
θL

2

t (P )2 =
(
H ◦ S(P )

)
t′
.

Dividing out by the coordinates U
M
t′,0(0B) = H(0B)t′ , nonzero by assumption, we get

the “twisted” coordinates H(f(P )). To get coordinates for f(P ), apply the inverse of
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the Hadamard transform, that is (1/2g)H. We can again incorporate the scalar factor
1/2g in the coordinates of f(P ): rescaling its coordinates still gives a valid result (it
just corresponds to a different choice of rigidification ofM at the point f(P )).

Algorithm 12 Evaluation algorithm of a 2-isogeny of Kummer surfaces

Input: Affine level-2 theta coordinates P and R0 = H(0B) = (1, β, γ, δ).
Output: Affine level-2 theta coordinates f(P ).
P ′ = H ◦ S(P )
Q′ = P ′ ∗ I(R0)
f(P ) = H(Q′)
return f(P ).

Remark 3.41 (Special cases). In our algorithms, we assumed H(0B) had all nonzero
coordinates. Luckily, this is usually not a problem, as it generically holds for a prin-
cipally polarised abelian surface B. The only case where it does not happen is when
B is a product of elliptic curves (which are rare among 2-dimensional PPAVs) with a
non-product theta structure. The codomain and evaluation algorithms can be adapted
to handle this special case, as done in [DMPR23a, Algorithms 8, 9].

Remark 3.42 (Generalisations). The algorithms we showed in this section work on
Kummer varieties of principally polarised abelian surfaces (PPAVs of dimension 2).
We’ll see in Chapter 5 that for the cryptographic applications it is useful to have a
2-isogeny algorithm in dimension 4, 8 as well. This has been recently done in [Dar24].

Attempts for 4-isogenies

In dimension 1, working with elliptic curve arithmetic in the Montgomery model, one
can optimise chains of 2-isogenies using the fact, shown in [CH17], that 4-isogenies
in the Montgomery model have a faster formula with respect to the chaining of two
consecutive 2-isogenies. In practice, one performs two 2-isogenies at once. One would
like to see if something similar is possible in dimension 2. We’ll show a codomain
algorithm that, given points of order 16 above the kernel points of a 4-isogeny (that is,
two 2-isogenies chained) output the codomain of both the 2-isogenies at once. We’ll
see a possible application in Section 5.5.

We start from an abelian variety (A,L) with a symmetric level-2 theta structure
ΘL, and a 4-isogeny f : (A,L) → (B,M) with M of level 2. The goal is to find a
compatible level-8 structure ΘL4 on A so that

ker f = [2]K2(L4) = [2]−1K2(L), f∗θMi = θL
4

4i .

By a generalisation of the duplication formula, proved by Koizumi in [Koi76], see
also [Rob21, Theorem 2.7.1], one can obtain the following:
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Lemma 3.43. Let P be a point of A(k), and P its affine coordinates in the theta
structure ΘL, 2P = dbl(P ). For some scalar λ ∈ k, the following holds:

θ
L
i (2P ) = λ

∑
t∈Z(2)

θ
L4

i+4t(P ), i ∈ (Z/8Z)2.

Definition 3.44. Let (A,L) be a PAV with an attached theta structure ΘL, and fix
0A an affine lift of its theta null point. Let T ∈ A[ℓ] be an ℓ-torsion point. We say that
an affine theta coordinate vector T

∗
is a canonical ℓ-torsion lift if mult(ℓ, T

∗
) = 0A.

Note that for a general T , we only know mult(ℓ, T ) = λ0A for some nonzero λ.

Proposition 3.45. Let T1, T2 be 4-torsion points of A generating ker f = ⟨T1, T2⟩ =
K2(L2). Fix an affine lift of the theta null point 0A, and suppose we’re given level-2
canonical 4-torsion lifts T1, T2, T1 + T2. Then the theta null point of B is given by

0B = H−1(θ
L
00(0), θ

L
00(T1), θ

L
00(T2), θ

L
00(T1 + T2))

and the theta null point of the “intermediate” codomain C = A/[2] ker f is given by

0C = (ψ(0A), ψ(T1), ψ(T2), ψ(T1 + T2)), ψ(R) =
∑

j
(H ◦ S(R))j .

Proof. Consider 8-torsion points S1, S2 with [2]Si = Ti. We have that Si are torsion
points underlying the theta group G(L4), defining an action on level-8 coordinates:

(θ
L4

i1,i2(S1 + P ))(i1,i2)∈(Z/8Z)2 = (ζi18 θ
L4

i1,i2(P ))i1,i2 , ζ8 primitive 8-th root of 1,

(θ
L4

i1,i2(S2 + P ))(i1,i2)∈(Z/8Z)2 = (ζi28 θ
L4

i1,i2(P ))i1,i2 .

In particular, restricting our view to indices i ≡ 0 (mod 4), writing

(3.11) f(P ) = (θ
L4

i (P ))i∈{00,04,40,44} = (x, y, z, w)

we obtain

(θ
L4

i (S1 + P ))i∈{00,04,40,44} = (x,−y, z,−w),

(θ
L4

i (S2 + P ))i∈{00,04,40,44} = (x, y,−z,−w),

(θ
L4

i (S1 + S2 + P ))i∈{00,04,40,44} = (x,−y,−z, w)

(3.12)

Now set P = 0A in Lemma 3.43: if (a, b, c, d) = (θi
L4

(0A))i∈{00,04,40,44} = 0B,
then equations (3.11) and (3.12) imply that there exist scalars λ1, . . . , λ4 making the
following hold:

θ
L
00(0A) = λ1(a+ b+ c+ d),

θ
L
00(T1) = λ2(a− b+ c− d),

θ
L
00(T2) = λ3(a+ b− c− d),

θ
L
00(T1 + T2) = λ4(a− b− c+ d).
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In [LR12] it is shown that all the λi are equal to 1 when the affine lifts Tj are canonical
4-torsion lifts, hence

H(0B) = H(a, b, c, d) = (θ
L
00(0), θ

L
00(T1), θ

L
00(T2), θ

L
00(T1 + T2))

as wanted.
The last part of the proposition follows from [Rob21, Corollary 2.10.9].

We’re now left with the task of computing canonical 4-torsion lifts required as input
for Proposition 3.45:

Proposition 3.46. Let S ∈ A[16] be a torsion point, S a corresponding affine level-2
theta coordinate vector and g[8]S ∈ G(L) the privileged theta group element induced
by the 2-torsion point [8]S, inducing an action on affine level-2 coordinates. Define
R3 = g[8]S ⋆mult(3, S), R5 = mult(5, S). Both R3 and R5 are affine coordinate vectors
for [5]S, so we can define their ratio as r = (R5)i/(R3)i for any nonzero coordinate i.
The point

T
∗
= r ·mult(4, S)

is a canonical lift of the 4-torsion point T = [4]S.

Proof. Let T = 4S = mult(4, S). We are looking for canonical lifts T
∗
= µ4T and

S
∗
= µ16S. The final goal is to find the value of µ4.
From the homogeneity relations (Lemma 3.37) we have µ4 · T = T

∗
= [4]S

∗
=

µ4
2

16[4]S = µ1616T , which implies µ4 = µ1616.
We can compute µ1616 as follows. Since S

∗
is a canonical 16-torsion lift, it satisfies

g[8]S ⋆ [3]S
∗
= [11]S

∗
= −[5]S∗

. Note that level-2 coordinates are invariant by point
negation. Again by homogeneity (note that the action by g[8]S is linear), we have:

µ3
2

16 · (g[8]S ⋆ (θi(3S))i) = µ5
2

16 · (θi(5S))i.

Taking ratios, we recover µ25−9
16 = µ1616 = µ4 as desired.





Chapter 4

Pairings

This chapter is devoted to the algorithmic computation of pairings on Jacobian vari-
eties, with a particular focus on elliptic curves. Pairings were introduced in Section
1.3, where we presented Miller’s algorithm to compute the Weil and Tate pairings on
elliptic curves. Here, we will present some recent algorithms introduced in [Sta08],
[LR10], [LR15], that are more efficient than the standard Miller algorithm, simpler to
implement and allow for generalisation to higher dimensions. Like Miller’s algorithm,
these algorithms work on all abelian varieties, whereas the efficiency of most state-of-
the-art implementations of pairings is limited to curves with specific parameters over
specific finite fields.

These algorithms make use of two ingredients: the arithmetic algorithms in the
theta model developed in Sections 3.2, 3.3, and the theory of biextensions of abelian
groups (in particular, of abelian varieties) introduced in [Mum68], [Gro72].

We review some computational theory of biextensions we’re going to need, then use
it for pairing computations and provide an implementation in dimension 2 as example.

4.1 Biextensions

Biextensions of algebraic groups

Definition 4.1. Let H,G be algebraic groups. An extension of H by G is an algebraic
group T fitting in an exact sequence

(4.1) 0 −→ G −→ T −→ H −→ 0.

Example 4.2. Let (A,L) be a polarised abelian variety with L of separable type, and
let H(L) be defined as in Definition 2.42. Then the theta group G(L) is an extension
of H(L) by Gm.

Definition 4.3. Let A1, A2, G be algebraic groups. A biextension X of A1 × A2 by
G is an algebraic group equipped with projection maps πi : X → Ai such that for all
a1 ∈ A1, the fiber π

−1
1 (a1) ⊆ X is an extension of A2 by G, and similarly for all a2 ∈ A2

the fiber π−1
2 (a2) is an extension of A1 by G.

57
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For i = 1, 2, we say that x ∈ B lies above ai ∈ Ai if πi(x) = ai.

Extensions are naturally linked to the concept of torsors.

Definition 4.4. Let G,A be algebraic groups. The trivial G-torsor over A is the
algebraic groupG×A equipped with the action ofG onG×A given by g·(h, a) = (gh, a).

A G-torsor over A is an algebraic group T equipped with a projection map π : T ↠
A and an action G×T → T compatible with the projection on A (that is, π(g ·t) = π(t)
for all g ∈ G, t ∈ T ), such that the map G × T → T × T given by (g, t) 7→ (t, g · t)
is an isomorphism, and such that T is locally trivial: for all Zariski-open U ⊆ A, the
preimage π−1(U) is the trivial G-torsor over U .

Example 4.5. Indeed, an extension T of A by G is a G-torsor over A, where the
projection map is given by the short exact sequence (4.1), and the action G× T → T
is just multiplication (seeing G as a subgroup of T ). Likewise, in a biextension X of
A1×A2 by G, the fibers π

−1
1 (a1) and π

−1
2 (a2) are G-torsors over A2 and A1 respectively.

Since the fibers of a biextension above ai ∈ Ai are extensions over the other group
(in particular, they’re groups themselves), a biextension is always equipped with two
partial group laws.

Definition 4.6. Let X be a biextension of A1 × A2 by G. Denote by xa,b a general
biextension element lying above (a, b).

We define on B a partial group law ⋆1 that multiplies two elements xa,a2 , xa′,a2 of
the fiber π−1

2 (a2), for some a2 ∈ A2, into an element xa,a2 ⋆1xa′,a2 = xaa′,a2 of the same
fiber. Similarly, a partial group law ⋆2 is defined, acting on fibers of the form π−1

1 (a1).

Biextensions of abelian varieties

We now specialise the construction of biextensions to the case of abelian varieties. Let
A be an abelian variety, and let D ∈ Pic(A) be an ample divisor inducing a polarisation
λD via the line bundle LD. For the rest of the section, suppose LD is totally symmetric,
so that we can work with level-2 theta coordinates.

The description of biextensions of abelian varieties comes from general facts:

Fact 4.7 ([Gro72, Remarque 2.9.6]). Let A,B be abelian varieties. The set of biex-
tensions of A×B by Gm is in 1-to-1 correspondence with the set of isogenies f : A→
B̂ = Pic0(B). In particular, if A = B, the biextensions of A× A by Gm are in 1-to-1
correspondence with polarisations of A.

Before stating the next theorem, we recall Notation 2.46: for any P ∈ A and
D ∈ Div(A), we denote DP = t∗P (D)−D.

Theorem 4.8. Let A be an abelian variety, D an ample divisor inducing a polarisation
λD. The biextension XD of E × E by Gm corresponding to λD can be described as
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follows. The elements of XD are tuples (P,Q, gP,Q), where gP,Q is a rational function
on A with divisor

div gP,Q = t∗PDQ −DQ = DP+Q −DP −DQ.

The projection maps are the natural ones: π1 : (P,Q, gP,Q) 7→ P , π2 : (P,Q, gP,Q) 7→ Q.
The partial group law ⋆1 is given by (P1, Q, gP1,Q)⋆1(P2, Q, gP2,Q) = (P1+P2, Q, gP1+P2,Q)
where

(4.2) gP1+P2,Q = gP1,Q(·)gP2,Q(·+ P1) = gP1,Q(·)gP2,Q(·)
gP1,P2(·+Q)

gP1,P2(·)
,

for any gP1,P2 above (P1, P2). The result is independent of the choice of gP1,P2 since
any other choice differs by a nonzero scalar factor that cancels out in the fraction.

The partial group law ⋆2 is obtained symmetrically, exchanging the roles of the P s
and the Qs.

Proof. The result is proved in [Rob24a, Theorem 3.6].

By induction, using (4.2), one can prove the following fact, that we are going to
use in the next sections.

Corollary 4.9. Let (A,L) be a principally polarised abelian variety, where L is induced
by a divisor D. Let P ∈ A be a point, m ∈ N an integer. One inductively shows

gmP,Q = g⋆1,mP,Q = gmP,Q(·)
fm,P (·+Q)

fm,P (·)

where fm,P = gP,P · g2P,P · . . . · g(m−1)P,P is a function with divisor

div fm,P = DmP −mDP .

This fact will be useful for pairing computations: what we are going to present will
be generalisations of Miller’s algorithm for elliptic curves (see Proposition 1.49). Note,
indeed, that if E is an elliptic curve, D = (0E) gives the principal polarisation and
P ∈ E is a point of ℓ-torsion, then we have div fℓ,P = DℓP − ℓDP = ℓ((0E)− (−P )) ∼
ℓ((P )− (0E)). Up to sign conventions in the defintions, fℓ,P is a Miller function for P .

4.2 Rigidifications and cubical representations

Cubical representations

We are now going to represent biextension elements in a more concrete way, using the
affine coordinates we discussed in Section 3.2. More precisely, once we fix an ample
totally symmetric divisor D with the associated line bundle L and biextension XD, we
also fix a theta structure ΘL of level n. Fixing a rigidification of L at P is equivalent
to fixing a tuple of affine theta coordinates P .
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Recall that a biextension element gP,Q has divisor t∗P+QD + D − t∗PD − t∗QD =
DP+Q −DP −DQ. The invertible sheaf

Lsq = t∗P+QL ⊗ L⊗ t∗PL−1 ⊗ t∗QL−1

is isomorphic to the trivial sheaf OA, by the theorem of the square (Theorem 2.24). If
L = LD, then the above sheaf is canonically isomorphic to LDP+Q−DP−DQ

Fix a rigidification at 0A of the line bundle Lsq, or equivalently, fix affine coordinates
0A, P ,Q, P +Q. This induces a local trivialisation around 0A, but since the whole
sheaf is trivial it extends to a global trivialisation. In particular, a unique biextension
element is induced by this trivialisation, that is, the rational function gP,Q of divisor
DP+Q −DP −DQ corresponding to 1 via the isomorphism.

Notation 4.10. We denote the biextension element induced by the affine coordinate
vectors 0A, P ,Q, P +Q as gP,Q = [0A, P ,Q, P +Q]. This is called a cubical point in
[Rob24a], or a cubical representation of gP,Q, because the properties of the torsors
attached to our biextension come from the Theorem of the Cube [Bre83].

Remark 4.11. The cubical representation is redundant: the same gP,Q is induced by
other quadruples

gP,Q = [λ00A, λPP , λQQ,λ+P +Q], λ0λ+ = λPλQ.

Indeed, if we rescale the rigidifications at 0, P,Q, P +Q by scalars as above, the condi-
tion λ0λ+ = λPλQ ensures that these scalars cancel each other out in the isomorphism
LP+Q ⊗L0A ⊗L

−1
P ⊗L

−1
Q
∼= OA, so the isomorphism stays the same and so does gP,Q.

The cubical representation works well with the partial group laws of the biextension:

Proposition 4.12. Consider a biextension on a polarised abelian variety A, and let
gP1,Q, gP2,Q be two biextension elements respectively represented by [0, P1, Q, P1 +Q]
and [0, P2, Q, P2 +Q]. Let P1 + P2 be any affine coordinate vector of the point P1+P2,
and let P1 + P2 +Q = 3WayAdd(P1, P2, Q, P2 +Q,P1 +Q,P1 + P2).

A cubical representation of their ⋆1-product gP1,Q ⋆1 gP2,Q = gP1+P2,Q is given by

gP1+P2,Q = [0, P1 + P2, Q, P1 + P2 +Q].

For a given integer m and a point P ∈ A, let mP = mult(m,P ) and mP +Q =
ladder(m,P ,Q, P +Q, 0A). The expression

g⋆1,mP,Q = gmP,Q = [0,mP ,Q,mP +Q]

is a cubical representation of the exponentiation of gP,Q in the partial group law ⋆1.

Proof. The result is proved in [Rob24a, Theorem 4.16].

We can now see how to evaluate a biextension function via the cubical representa-
tion.
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Proposition 4.13. Let (A,L) be a polarised abelian variety with L = LD symmetric.
Let X ∈ Γ(A,L) be a section with zero divisor D. Let gP,Q be a biextension element
represented by [0A, P ,Q, P +Q]. For any point R ∈ A such that does not lie in the
support of D+div gP,Q, fix affine coordinates P +R,Q+R and compute P +Q+R =
3WayAdd(P ,Q,R,Q+R,P +R,P +Q). The evaluation of gP,Q at R is given by

gP,Q(R) =
X(R)X(P +Q+R)

X(P +R)X(Q+R)
.

Proof. This is proved in [Rob24a, Theorem 4.28].

When D is an effective divisor, there is indeed a section X as in the proposition.
For example, if A = E is an elliptic curve and D is 2(0E) or 3(0E), then we can take
X to be the projective coordinate Z.

Finally, we remember that the theta group G(D) = G(L) acts on sections of L,
hence on the affine coordinates giving the cubical representation. We state how this
action works:

Proposition 4.14 ([Rob24a, Lemma 4.18]). Let (A,L) be a PAV with L = LD sym-
metric. Let T ∈ H(D) be an element underlying the theta group. For all Q ∈ A, the
point T induces a privileged biextension element gT,Q. More precisely, the map

sQ : T 7→ gT,Q = gT (·+Q)/gT , (T, gT ) ∈ G(D) any element above T

is a group homomorphism, and

T ⋆ gP,Q = sQ(T ) ⋆1 gP,Q

is a group action of H(D) on the biextension.
If gP,Q is represented by [0A, P ,Q, P +Q], then we have

T ⋆ gP,Q = [0A, gT ⋆ P ,Q, gT ⋆ P +Q] = [0A, T + P ,Q, T + P +Q].

The expressions above don’t depend on the choice of gT by Remark 4.11: a different
choice of gT would rescale the second and fourth point by the same scalar.

4.3 Pairing computations

In this section, we are finally going to see how to compute pairings using biextensions
and the arithmetic of cubical representations.

We refer the reader back to Section 1.3 for the definitions of the Weil and Tate
pairings on elliptic curves. We can generalise definitions as follows for a g-dimensional
PAV A.1 As in Definition 2.42, if D is an ample divisor on A we denote by H(D) the
kernel of the polarisation λD induced by D.

1The following is not the standard treatment of the Weil and Tate pairings. Its equivalence to our
definitions is due to [Rob23b]
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Definition 4.15 (Tate, Weil pairing on PAVs). Let (A,LD) be a PAV over k.
� Consider a point P ∈ H(ℓD). Let P ′ be a formal sum of points P ′ =

∑
i ni(Pi)

that satisfies
∑

i ni = 0,
∑

i niPi = P . For example, one can take P ′ = (P )− (0).
AMiller function for ℓ, P,D is a rational function fℓ,D′

P
on A with divisor ℓDP ′ :=

ℓ
∑

i nit
∗
Pi
D. By the theorem of the square, DP ′ is linearly equivalent to DP , so

ℓDP ′ ∼ ℓDP is indeed principal. In fact, P lies in the kernel of λℓD by assumption
and ℓDP = λℓD(P ) = 0.

� Let Q be a rational point in A(k). Consider a formal sum of points Q′ as above
that does not intersect the support ofDP ′ . TheD-Tate pairing is a nondegenerate
bilinear map

eT,D,ℓ : H(ℓD)(k)×A(k)/[ℓ]A(k)→ k∗/(k∗)ℓ

that can be computed as

eT,D,ℓ(P,Q) = fℓ,DP ′ (Q
′) =

∏
i
fℓ,DP ′ (Qi)

ni (mod (k∗)ℓ).

� Let P,Q ∈ H(ℓD). Consider two formal sums of points P ′, Q′ as above having
disjoint supports. The D-Weil pairing is the nondegenerate bilinear map

eW,D,ℓ : H(ℓD)×H(ℓD)→ µℓ, (P,Q) 7→ fℓ,DP ′ (Q
′)/fℓ,DQ′ (P

′).

Note that while the definition of the Tate pairing depends on k (as both its do-
main and codomain do), the Weil pairing is geometric: it is defined over geometric
points, and its output lies in kalg.

One can show that the expressions for eT,D,ℓ and eW,D,ℓ are independent of the
choice of P ′, Q′ by Weil reciprocity [Lan83, §VI, Proposition 4].

These definitions are more general than the ones given for elliptic curves, since the
divisor D comes into play.

Remark 4.16. On an elliptic curve E, if we take the divisor D = (0E), then the
generalised Weil pairing eW,D,ℓ coincides with the standard Weil pairing eW,ℓ (likewise,
eT,D,ℓ is eT,ℓ). This happens in general for principally polarised abelian varieties, for
which the standard Weil pairing eW,ℓ was defined in Theorem 2.32.

Lemma 4.17 ([Rob21, p. 56]). Let D0 be an ample divisor on an abelian variety A.
If D = mD0 for some positive integer m, then we have

eT,D,ℓ = emT,D0,ℓ, eW,D,ℓ = emW,D0,ℓ.

Odd-order pairing computations

Having defined our pairings, we can now look at how to compute them.

Lemma 4.18. Let ℓ be an integer, P,Q ∈ A two points, such that P is a point of
ℓ-torsion. If gP,Q is a biextension element above (P,Q), then its ⋆1-exponentiation is
given by

gℓP,Q = gP,Q(·)ℓ ·
fℓ,D,P (·)

fℓ,D,P (·+Q)
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where fℓ,D,P = (gP,P · · · g(ℓ−1)P,P )
−1 is a Miller function for ℓ, P,D.

Proof. The result follows immediately from Corollary 4.9, observing that the divisor
of f−1

ℓ,D,P is DℓP − ℓDP = −ℓDP .

Throwing in cubical representations and theta functions, we get an algorithm for
order-ℓ pairings, when ℓ is odd.

Theorem 4.19. (Squared Tate pairing on PPAVs) Let (A,L0) be a PPAV, equipped
with L = L20 totally symmetric of level 2 and a symmetric theta structure ΘL. Let ℓ be
a positive integer, P ∈ A[ℓ](k) a k-rational torsion point, Q ∈ A(k) another rational

point, gP,Q a rational biextension element. Define gℓP,Q = g⋆1,ℓP,Q.

The evaluation of its inverse gℓP,Q(R)
−1 at any point R, modulo ℓ-th powers in k∗,

equals the squared Tate Pairing eT,ℓ(P,Q)2 between points P and Q mod [ℓ]A(k).
In particular, if we fix a cubical representation 0A, P ,Q, P +Q made of affine level-

2 coordinates (using theta functions on L) and we define

ℓP = mult(ℓ, P ), ℓP +Q = ladder(ℓ, P ,Q, P +Q)

then we can compute

gℓP,Q(0)
−1 =

θi(Q)

θi(ℓP +Q)

θj(ℓP )

θj(0A)
,

where i, j are such that θi and θj don’t vanish at Q and 0A respectively.

Before the proof, we note that, even if the theorem only allows us to compute
the squared pairing, when ℓ is odd it is easy to then recover the non-squared pairing
eT,ℓ(P,Q): if r = 1/2 (mod ℓ), we can compute (eT,ℓ(P,Q)2)r ≡ eT,ℓ(P,Q) (mod kℓ).

Proof of Theorem 4.19. Let D0, D = 2D0 the divisors corresponding respectively to
L0,L.

First of all, we observe that the divisor of gℓP,Q isDℓP+Q−DℓP−DQ, which equals 0
since ℓP = 0A. That is, gℓP,Q is a constant, and so is its inverse. By Lemma 4.18, up to
ℓ-th powers its value is gℓP,Q(0)

−1 ≡ fℓ,D,P ((Q)−(0A)) where fℓ,D,P is a Miller function2

for ℓ, P,D. By definition, the Tate pairing is exactly eT,D,ℓ(P,Q) = fℓ,D,P ((Q)− (0A)).
Finally, Lemma 4.17 yields that eT,D,ℓ = e2T,D0,ℓ

= e2T,ℓ is the squared pairing as desired.
The expression involving the cubical representation comes from Propositions 4.12

and 4.13: we have indeed

gℓP,Q(0) =
X(ℓP +Q)X(0A)

X(Q)X(ℓP )

for some projective coordinate X ∈ Γ(A,L) that has D as a divisor of zeroes. Note
however that ℓP and 0 are the same point on the abelian variety (and so are ℓP +Q

2Technically, to avoid zeroes and poles for the sake of well-definedness, (Q) − (0A) could need to
be replaced by some equivalent combination of points Q′, as in Definition 4.15. However, we say right
below how to make gℓP,Q(0) always well-defined.
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and Q), and their affine coordinate vectors are a rescaling of one another: they satisfy
ℓP = λ0A for some λ, so that we have

θi(ℓP )/θi(0A) = λ = X(ℓP )/X(0A)

for all i. Choosing i that makes the expression well-defined, the conclusion follows.

A similar discussion can be carried out for the Weil pairing, giving the following

Corollary 4.20. Consider a PPAV (A,L0) and L, D,ΘL as above. Let P,Q ∈ A[ℓ]
be ℓ-torsion points. The ratio of biextension functions gP,ℓQ(R)/gℓP,Q(R) evaluated at
any point R gives the squared Weil pairing eW,ℓ(P,Q)2 and can be computed as a ratio
of theta coordinates

eW,ℓ(P,Q)2 =
θi(ℓQ+ P )θj(0A)

θi(P )θj(ℓQ)

θi′(Q)θj′(ℓP )

θi′(ℓP +Q)θj′(0A)

If ℓ is odd, we can easily recover the non-squared pairing eW,ℓ(P,Q) = eW,ℓ(P,Q)2r,
with r = 2−1 mod ℓ.

Even-order pairing computations

The above theorems give fast recipes to compute the squared Tate and Weil pairing,
and the non-squared ones when the integer ℓ is odd. When instead ℓ = 2m is even,
some more work is needed.

Let D = 2D0 be a totally symmetric ample divisor of degree 2, like before. Let
P ∈ A[ℓ](k) be a rational point of ℓ-torsion and Q ∈ A(k) another rational point. Note
that we have A[ℓ] = H(ℓD0) = H(mD). Using this, we will compute

eT,ℓ(P,Q) = eT,D0,2m(P,Q)

(by compatibility of the Tate pairing with integers) = eT,D0,m(P,Q)2

(by Lemma 4.17) = eT,D,m(P,Q),

where the last term makes sense since P lies in the kernelH(mD), and can be computed
via the cubical arithmetic, using coordinates that are sections of LD.

We have an analogue of Lemma 4.18 to find a Miller function in this case:

Lemma 4.21. Let m be a positive integer, D a divisor on A, and P,Q ∈ A two points
with P ∈ H(mD). Let gP,Q be a biextension element above (P,Q) and gmP ∈ G(mD)
an element of the theta group lying above P (that is, a function with divisor DmP ). If
we write

gmP,Q = g⋆1mP,Q = gP,Q(·)m
f ′m,D,P (·)

f ′m,D,P (·+Q)
, f ′m,D,P = (gP,P · · · g(m−1)P,P )

−1,

then the function f ′m,D,P gmP is a Miller function for m,D,P .
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Proof. The product f ′m,D,P gmP has the required divisor: indeed div f ′m,D,P gmP =
(mDP −DmP ) +DmP = mDP .

Using this, we can compute nonsquared Tate pairings also in the case of even ℓ:

Theorem 4.22 (Nonsquared Tate pairing on PPAVs). Let (A,L0) be a PPAV, equipped
with L = L20 totally symmetric of level 2 and a symmetric theta structure ΘL. Denote
by D0, D the divisors corresponding to L0,L respectively. Let ℓ = 2m be a positive
integer, P ∈ A[ℓ] a torsion point, Q ∈ A another point.

If a biextension function gP,Q ∈ XD is the tensor square of a biextension function

g′P,Q in XD0, then the function g−1
mP,Q

g−mP (·)
g−mP (·+Q) is a constant and equals the Tate pairing

eT,ℓ(P,Q), with gmP,Q = g⋆1mP,Q and g−mP ∈ G(mD) any function above −mP (since
we take ratios, the constant is independent of the choice of g−mP ).

If we fix a cubical representation 0A, P ,Q, P +Q made of affine level-2 coordinates
(using theta functions on L) for gP,Q, and we define

mP = mult(m,P ), mP +Q = ladder(m,P ,Q, P +Q)

then we can compute the pairing using the action of the theta group on global sections:

(4.3) eT,ℓ(P,Q) =
θi(Q)

(g−mP ⋆ θi)(mP +Q)

(g−mP ⋆ θj)(mP )

θj(0A)

where i, j are such that θi and θj don’t vanish at Q and 0A respectively.

On input m, 0A, P ,Q, P +Q, Algorithm 13 computes the Tate pairing eT,ℓ(P,Q) in
time O(log ℓ) using the above formulas.

Proof. The fact that the function h = g−1
mP,Q

g−mP (·)
g−mP (·+Q) is constant can be seen by look-

ing at its divisor. To see that this constant is exactly the Tate pairing, we observe that
this function, evaluated at 0A, is equal to s((Q) − (0A))g

m
P,Q, where s = f ′m,D,P g

−1
−mP ,

with the notations of Lemma 4.21, is a Miller function, and we can ignore gmP,Q because
by assumption gP,Q is already the square of a rational element, so gmP,Q is the ℓ-th
power of a rational element.

Finally, to make h computable in practice, we show it’s a biextension element and
give a cubical representation:

h−1 = gmP,Q
g−mP (·+Q)

g−mP (·)
= (−mP ) ⋆ gmP,Q.

If gmP,Q is represented by [0A,mP ,Q,mP +Q], then (−mP ) ⋆ gmP,Q is represented
by [0A, (−mP ) ⋆ mP,Q, (−mP ) ⋆ mP +Q], which gives exactly Equation (4.3) when
evaluated at 0A and inversed.

The Weil pairing is computed similarly, and is shown in Algorithm 14.
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Algorithm 13 Tate pairing using cubical level-2 representation

Input: Affine level-2 coordinates 0A, P ,Q, P +Q with P ∈ A[ℓ](k), Q ∈ A(k), a
positive integer ℓ

Output: A representative of the Tate pairing eT,ℓ(P,Q) in k
if ℓ is odd then n← ℓ else n← ℓ/2
R← mult(n, P ) ▷ R = nP
R′ ← ladder(n, P ,Q, P +Q, 0A) ▷ R′ = nP +Q
if ℓ is even then ▷ Compute the theta action by the 2-torsion point −nP = nP

R← (nP ) ⋆ R ▷ R = (nP ) ⋆ nP
R′ ← (nP ) ⋆ R′ ▷ R′ = (nP ) ⋆ nP +Q

λ1 = (Q)i/R
′
i for the first i such that R′

i ̸= 0
λ2 = (0A)i/Ri for the first i such that Ri ̸= 0
e = λ1/λ2
if ℓ is odd then

e← e(ℓ+1)/2

return e

Algorithm 14 Weil pairing using cubical level-2 representation

Input: Affine level-2 coordinates 0A, P ,Q, P +Q with P,Q ∈ A[ℓ], an integer ℓ ≤ 0
Output: The Weil pairing eW,ℓ(P,Q)
ePQ ← eT,ℓ(P,Q) as computed in Algorithm 13
eQP ← eT,ℓ(Q,P ) as computed in Algorithm 13
return ePQ/eQP

Implementation and remarks

The above pairing algorithms have been implemented by Robert in Magma [BCP97] for
hyperelliptic Jacobians in the AVIsogenies library [BCR11] and in SageMath [S+24],
in the case of elliptic curves (both in the Montgomery model and the theta model), in
[Rob23c]. We combined the latter with the SageMath code of [DMPR23b], which pro-
vides an interface for theta Kummer surfaces, in order to give a proof-of-concept compu-
tations the biextension pairing algorithms on hyperelliptic genus-2 Jacobians, available
at https://github.com/sferl/theta-pairings-dim2. SageMath currently doesn’t
have an interface like AVIsogenies to work with general theta PAVs – Tate and Weil
pairing algorithms are even lacking in dimension 2, though public efficient implemen-
tations of Miller’s algorithm on genus-2 Jacobians exist (see [AFK24] among the latest
ones). As our proof of concept shows, if such an interface did exist, [Rob23c] could be
easily adapted to it, becoming an efficient and general alternative to Miller’s algorithm.

A point worth remarking, from the implementor’s side, is that in the elliptic curve
case biextension pairings only need Montgomery ladders and a few edits on differential
additions and doublings, that is just a few edits close to what any library on elliptic
curve computation already has.

https://github.com/sferl/theta-pairings-dim2


Chapter 5

Applications to cryptography:
SQIsign2D

5.1 Cryptography

The main motivation for the algorithms on abelian variety we went through in the last
chapters comes from isogeny-based cryptography.

Cryptography is the study of secure communication between two parties. Its proto-
cols guarantee authenticity, integrity and secrecy of data sent across insecure channels.
It is central in today’s internet communication, where it is used to secure transactions,
messages and personal data.

Public-key cryptography is a type of cryptography where each party owning a
private key, which is kept secret, also possesses a corresponding public key, which can
be shared with anyone. One can build several types of protocols through this system:
e.g., digital signatures, key exchanges and encryption. We’ll focus in particular on
digital signatures, where the owner of a private key uses it to sign a message, and
anyone else can verify the signature using the signer’s public key. The security of the
system relies on the fact that it is computationally infeasible to derive the private key
from the public key.

Diffie–Hellman Key exchange

The simplest example of public-key cryptography is the Diffie–Hellman key exchange
protocol [DH76]. In this protocol, the two parties, customarily called Alice and Bob,
agree on a large prime number p and a generator g of the multiplicative group F×

p , and
execute the following protocol (see also Figure 5.1) to get a shared secret in the end,
secret to everyone but Alice and Bob.

� Alice chooses a secret integer a and sends ga mod p to Bob.

� Bob chooses a secret integer b and sends gb mod p to Alice.

� Both parties can then compute the shared secret gab mod p.

67
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Public parameters: p a large prime, g generating F×
p

Alice

a ∈R {2, . . . , p− 2}

A = ga mod p

KAB = (B)a = gba

Bob

b ∈R {2, . . . , p− 2}

B = gb mod p

KAB = (A)b = gab

A B

Figure 5.1: The Diffie–Hellman key exchange.

Here, ga (resp. gb) mod p is the public key of Alice (resp. Bob), and a (resp. b)
is the private key. The security of the protocol relies on the difficulty of computing
discrete logarithms ga 7→ a in F×

p .

Remark 5.1. In the DH protocol, F×
p can be replaced by any cyclic group where discrete

logarithms are hard. Indeed, a variant of the Diffie–Hellman protocol is the Elliptic
Curve Diffie–Hellman (ECDH) protocol, where the group F×

p is replaced by the group
of points of an elliptic curve E over a finite field Fp.

The Diffie–Hellman protocol (as well as its elliptic curve variant) is secure against
classical computers, but it is vulnerable to quantum computers. In 1994, Peter Shor
showed that a quantum computer could factor large integers and solve the discrete
logarithm problem over finite abelian groups in polynomial time [Sho94]. This means
that, if a large enough quantum computer is built, it could break the security of the
Diffie–Hellman protocol and most other public-key cryptosystems currently in use.
This is a major concern for the security of the internet, and that’s why the crypto-
graphic community is now looking for new post-quantum cryptographic protocols that
would not break in polynomial time under quantum attacks.

The American National Institute of Standards and Technology (NIST), the de-facto
worldwide reference for standardisation in cryptography, has launched in 2016 the
Post-Quantum Cryptography Standardization Project [NIS16], a competition aimed
at indentifying and standardising quantum-secure cryptographic protocols that run on
classical computers. Ideally, they’d be drop-in replacements of the (pre-quantum) pro-
tocols currently in use, so that when quantum computers become a reality, a smooth
transition to quantum-secure protocols will have already happened. The first round
of standards has been just released1 (August 2024), but the search for post-quantum
protocols is still ongoing and active, looking for diversity in the mathematical con-
structions underlying the protocols and for advanced functionalities.

1https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-

post-quantum-encryption-standards, accessed: September 2024

https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
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5.2 Isogeny-based cryptography

Isogeny-based cryptography is a branch of post-quantum cryptography whose con-
structions are based on walks in the graph of isogenies between elliptic curves. The
study of isogenies is classical in algebraic geometry, but their algorithmic investiga-
tion is relatively recent. Work on isogeny graphs can be dated back to the late 1980s
[Mes86] (see also the work on isogeny volcanoes in [Koh96]). The first applications
in cryptography came in the early 2000s with works by Teske [Tes06], Charles, Goren
and Lauter [CLG09], Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06]. Since
then, many other protocols have been proposed: key exchanges (such as SIDH [JD11],
CSIDH [CLM+18]), encryption schemes (such as FESTA [BMP23]), digital signatures
(we’ll examine SQISign [DKL+20] in the next sections), and frameworks providing
more advanced features [Bas24].

Hard problems

The security of isogeny-based cryptography relies on the hardness of the

Problem 5.2 (Isogeny problem). Given two elliptic curves E,E′/Fq isogenous to each
other over Fq, compute a possible φ : E → E′ over Fq (in the sense of Problem 1.32).

Solving the isogeny problem is hard for classical computers: the best known algo-
rithms have exponential complexity in log q, log#E (see [Gal24] for the most recent
advances). The isogeny problem is believed to be hard even for quantum computers:
see [GV18] for a discussion.

Remark 5.3. The corresponding decisional problem, i.e., deciding whether two ellip-
tic curves E,E′/Fq are Fq-isogenous, is instead easy: it is equivalent to determining
whether E(Fq) and E′(Fq) have the same cardinality, which can be done in polynomial
time with respect to log q using Schoof’s algorithm [Sch95].

The class of supersingular elliptic curves (see Definition 1.13) has some nice prop-
erties that make them particularly suitable to work with both for the construction of
cryptographic protocols and for their security. In fact, supersingular isogeny graphs
don’t have any structure that current quantum attacks can exploit.2 The following
facts hold:

Proposition 5.4. Let E be a supersingular elliptic curve over a finite field Fq of
characteristic p.

(i) The endomorphism ring of E is an order in the quaternion algebra Bp,∞.

(ii) The j-invariant j(E) belongs to Fp2. Therefore, up to isomorphism, E can be
assumed to be defined over Fp2.

2Ordinary isogeny graphs, as the one in [RS06], admit the action of an abelian group, the class group,
exploitable by a sub-exponential quantum algorithm by Kuperberg [Kup05], while the supersingular
graph admits no such group action.
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Figure 5.2: The 2-isogeny graph over F4312 (reproduced from [Cos19])

(iii) The number of Falg
p -isomorphism classes of supersingular elliptic curves is given

by ⌊p/12⌋+ δ, with δ ∈ {0, 1, 2}.
(iv) Suppose p is greater than 3 and E is defined over Fp. We have #E(Fp) = p+ 1

and #E(Fp2) = (p+ 1)2. More precisely, E(Fp2) = E[p+ 1] ∼= (Z/(p+ 1)Z)2.
(v) Let ℓ be a prime distinct from p. The graph of ℓ-isogenies between supersingular

elliptic curves over Fp2 is connected, ℓ + 1-regular, and is a Ramanujan graph.
In particular, it has a rapid mixing property: starting from any E0 and taking a
walk E0 ⇝ E of length O(log p) in the graph, the curve E at the end of the walk
is close-to-uniformly distributed.

Proof. The first statements are standard in textbooks on elliptic curves, see for example
[Sil09, V, Theorems 3.1, 4.1, 2.3.1]. For the last one, see [CGL09, Theorem 4.2].

By Proposition 1.37, a walk in the ℓ-isogeny graph is the same as a ℓn-isogeny. This
leads to the more concrete hard problem:

Problem 5.5 (Isogeny path). Given two elliptic curves E,E′/Fq such that there exists
a smooth-order φ : E → E′ defined over Fq (there can be many), compute one such φ.

Other natural hard problems can be defined over supersingular elliptic curves:

Problem 5.6 (Endomorphism ring problem). Given a random supersingular elliptic

curve E/Fq, find a Falg
p -basis of its endomorphism ring.

Problem 5.7 (One endomorphism ring problem). Given a random supersingular el-
liptic curve E/Fq, find a non-scalar endomorphism of E.

Some recent work showed that all these problems are computationally equivalent
to the supersingular isogeny problem: see [PW23], [HW23].

The SIDH protocol

As a first example of isogeny-based protocol, we present SIDH (Supersingular Isogeny
Diffie–Hellman). It is a key exchange protocol that mimics the Diffie–Hellman protocol,
but uses isogenies between supersingular elliptic curves instead of exponentiation in a
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finite field. It was first introduced in [JD11]. Though it has be shown not to be secure,
both this protocol and the attacks to it led to important developments in isogeny-based
cryptography, as we’ll see.

As public parameters, suppose fixed a (publicly known) supersingular elliptic curve
E0 defined over Fp2 . First consider the following (flawed) protocol:

Protocol 5.8.

(i) Alice chooses a secret walk φA : E0 → EA = E0/ ⟨PA⟩ in the 2-isogeny graph, or
equivalently, chooses a 2a-torsion point PA. She sends EA to Bob.

(ii) Symmetrically, Bob chooses a walk φB : E0 → EB/ ⟨PB⟩, PB ∈ E[3b]. He sends
EB to Alice.

(iii) Alice and Bob try and find the shared secret EAB = EA/ ⟨φA(PB)⟩ = EB/ ⟨φB(PA)⟩.

If we state the protocol this way, its security relies on the hardness of the isogeny
problem, that is, the difficulty of computing the isogenies φA and φB from the curves
EA and EB. However, for the protocol to work, Alice must be able to compute φB(PA)
while φB remains secret (Alice knows nothing about φB except for the codomain), and
vice-versa for Bob.

Therefore, the protocol must be modified as in Figure 5.3: first, fix (SA, TA) a
deterministic (Z/2aZ)-basis of E0[2

a], and (SB, TB) a deterministic (Z/3bZ)-basis of
E0[3

b]. Then replace steps (i) and (ii) by:

(i’) Alice chooses PA = SA + rATA for a secret integer rA (hence determines φA),
and sends out the action of φA on SB, TB along with EA = E0/ ⟨PA⟩.

(ii’) Bob defines rB, PB, φB, EB analogously, and sends φB(SA), φB(SB), EB.

Remark 5.9. The isogeny computation done by Alice and Bob can be made very effi-
cient just by choosing the prime p wisely. Indeed, let p = f · 2a3b − 1: by Proposition
5.4 (iv), choosing E0 over p we know that the 2a-torsion and the 3b torsion are fully
F2
p-rational. Therefore, the corresponding chains of 2-isogenies (resp. 3-isogenies) can

be computed using Proposition 1.37, directly over Fp2 without going to an extension
field, and this is key to efficiency.

More generally, if φ : E0 → E′ is an isogeny defined over Fp2 , then the codomain
also satisfies3 E′(Fp2) = E′[p+ 1].

The SIDH attacks

In this final form, the SIDH protocol can be executed efficiently, at the cost of publicly
exchanging some more pieces of information: but this added information is susceptible
of being exploited to retrieve the secret. Indeed, the final protocol is not secure.
Recent attacks [CD23] [MM22], [Rob23a] have shown that knowing the action of a

3For the readers with a bit of background on elliptic curves: here’s why. The p2-Frobenius endo-
morphism FE0 of E0 satisfies FE0 + [p] = 0, so it acts as the identity on p+ 1-torsion points. This is
why E0[p+ 1] is Fp2 -rational. If φ : E0 → E′ is defined over Fp2 , then the same relation holds for FE′

as well, therefore E′[p+ 1] is Fp2 -rational too.
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Public parameters:
p = f · 2a3b − 1 large prime, E0/Fp a supersingular curve;
Deterministic bases (SA, TA), (SB , TB) respectively of E0[2

a], E0[3
b].

Alice

rA ∈R {2, . . . , 2a − 2}
PA = SA + rATA

Compute φA : E0 → EA = E0/ ⟨PA⟩

φB(PA) = φB(SA) + rAφB(TA)
Compute EAB = EA/ ⟨φB(PA)⟩

Bob

rB ∈R {2, . . . , 3b − 2}
PB = SB + rBTB
Compute φB : E0 → EB = E0/ ⟨PB⟩

φA(PB) = φA(SB) + rBφA(TB)
Compute EAB = EB/ ⟨φA(PB)⟩

EA, φA(SB), φA(TB)

EB , φB(SA), φB(TA)

Figure 5.3: The SIDH key exchange.

secret isogeny on the N -torsion points for some smooth N (like N = 2a, 3b) allows to
efficiently retrieve the isogeny itself.

The attack, inspired by [Kan97], is made possible by the following lemma.

Notation 5.10. Let f : A1 → A2 be an isogeny of PPAVs with fixed principal polari-
sations λi on Ai. We denote by f̃ : A2 → A1 the isogeny λ−1

1 ◦ f̂ ◦ λ2.

Lemma 5.11 (Kani, [Kan97, §2]). Consider a commutative diagram of PPAVs

A A′

B B′

ψ

φ ψ′

φ′

where φ is a separable isogeny of degree m, and ψ is an isogeny of degree n.
Let N = m+ n. The isogeny of PPAVs

Φ =

(
ψ ψ̃′

−φ φ̃′

)
: A×B′ → A′ ×B

is a N -isogeny. If m,n are coprime, we can write

kerΦ = {(ψ̃(P ) + φ̃(Q), ψ′(P ) + φ′(Q)) | P ∈ A′[N ], Q ∈ B[N ]} =
= {([m]P, φ′ ◦ φ(P )) | P ∈ A[N ]}.

The idea of the attack is that an unknown, large-degree isogeny φ of elliptic curves
can be “embedded” into a 2-dimensional isogeny Φ of degree N (where N is chosen de-
pending on degφ), once we know the action of φ on N -torsion points. Using algorithms
for isogenies on higher-dimensional abelian varieties, the isogeny Φ can be computed
efficiently when N is smooth, and then φ can be extracted from it. In particular, if
N = 2n, we can compute Φ as a chain of 2-isogenies, which we saw how to compute in
Section 3.4.
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Corollary 5.12 (Embedding lemma, [Rob22b, Lemma 2.4]). Let φ : E1 → E2 be a
degree-m isogeny of elliptic curves, and suppose there exists some N = 2n such that
N −m = a2 is a square, gcd(a,m) = 1. The isogeny

Φ =

(
[a] −φ̃
φ [a]

)
: E1 × E2 → E1 × E2

is an N -isogeny. Its kernel is kerΦ = {([a]P,−φ(P )) | P ∈ E1[N ]} and is computable
once we know a and the action of φ on the N -torsion of E1.

In particular, given any point X ∈ E1, we can compute φ(X) = π2(Φ(−X, 0)).
More generally, if N − m is a sum of r ∈ {2, 4} squares, the isogeny φ can be

embedded into a 2r-dimensional isogeny Er1×Er2 using the same technique. Recall that
all positive integers can be written as a sum of 4 squares.

We saw in Section 1.2 that Fq-isogenies of degree m can be computed from their
kernel generators in time O(

√
ℓ), where ℓ is the largest prime dividing m. If moreover

we know the action of the isogeny on a point of large enough 2n-torsion, the embedding
lemma lets us instead compute isogenies of degree m < 2n in polynomial time with
respect to logm (By [Rob23a], it is O(log2m)), regardless of how m is factored. If
we know nothing about φ, this is of little help: computing this last action requires
O(
√
2n log2 q) – still exponential in logm – according to [Rob22a]; if we know some

torsion-point information instead, the computation of φ becomes really efficient.
Indeed, in the last years, after being used to break the security of SIDH, the embed-

ding lemma has been used constructively in new protocols, such as [BMP23]. Several
pre-existing isogeny-based protocols that used 1-dimensional isogenies were now up-
dated so as to make use of the embedding lemma, turning into “higher-dimensional”
versions (e.g., SCALLOP-HD [CLP24], SQIsignHD [DLRW24]), which often turn out
to be more efficient than their 1-dimensional counterparts. We refer the reader to
[Rob24b] for a survey on the HD-novelties introduced by the SIDH attacks.

5.3 Digital signatures and ZK identification schemes

In the following paragraphs, we’ll present an isogeny-based digital signature scheme
called SQIsign2D-West, a variant of the signature scheme SQIsign that uses higher-
dimensional isogenies. Before going into the details, we want to state what is a digital
signature scheme in general. For a complete treatment, see [MvOV01, Chapter 11].

As usual, consider two parties Alice and Bob. Alice wants to send a message m
to Bob, together with a signature, that is, a proof that the message is authentic and
Alice is indeed the author of the message. Given m and a signature for it, anyone can
verify that the signature is correct, but only Alice can produce it.

Definition 5.13. A digital signature scheme is the datum of three algorithms:
� Key generation KeyGen() 7→ (sk, pk). An algorithm that generates a key pair
(sk, pk) for Alice, such that Alice keeps the private key sk secret at all times,
while pk is public and linked to Alice’s identity.
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Alice, (pk, sk) Bob

pk, Public parameters PrA ∈R Scomm

c = c(rA, sk)
c

e ∈R Schale

r = r(e, c, sk)
r

Verify(r, e, c, pk) 7→ {0, 1}

Figure 5.4: A sigma protocol.

� Signature Sign(m, sk) 7→ σ. An algorithm that takes a message and Alice’s
secret data and output a signature σ for this message.

� Verification Verify(m,σ, pk) 7→ b ∈ {0, 1}. An algorithm that takes a message
m, a corresponding signature σ produced by the owner of pk and returns 1 if the
signature is valid, 0 otherwise.

Remark 5.14. A digital signature should satisfy at least the following properties, in
order to be used to sign documents and messages in the real world:

� Correctness: Verify(m,Sign(m, sk), pk) = 1: if a signature is produced correctly,
the verification algorithms always considers it valid.

� Unforgeability : given a new message m for which we don’t know any signature,
it is computationally hard to forge a signature σ on m under the public key pk
without prior knowledge of the private key sk.

There is a way to build digital signature schemes (in particular, the Sign algorithm)
from the more general construction of a zero-knowledge identification scheme, where a
prover Alice tries to prove her identity to a verifier Bob. In practice, Alice proves to
Bob that she knows her secret key sk, but without revealing it. Bob should gain no
information about sk at the end of the protocol, hence the name zero-knowledge.

Protocol 5.15 (Sigma protocol). A zero-knowledge identification scheme usually fol-
lows the following pattern, called a sigma (Σ) protocol because of Figure 5.4.

(i) Alice and Bob agree on public parameters; Alice has a private-public keypair
(sk, pk) and Bob knows that the public key pk belongs to Alice.

(ii) Alice sends a first message c, called a commitment, based on her secret data
masked by some randomness rA, which is also kept secret.

(iii) Bob sends a challenge e to Alice, chosen uniformly at random from some finite
challenge space.

(iv) Alice sends a response r to Bob’s challenge, based on e, c, using the knowledge
of her secret sk.

(v) Bob accepts r if it is a valid response to his challenge, otherwise rejects it.

Remark 5.16. A sigma protocol must satisfy three properties:
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� Completeness. If Alice knows the secret, then Bob always accepts the response
(that is, Alice can always play her role in the protocol according to the rules).

� Soundness. If Alice doesn’t know the secret, then Bob accepts the response with
negligible probability.

� Zero-knowledge. Bob learns nothing about the secret, except that Alice knows
it.

Definition 5.17 (Hash function). A cryptographically secure length-n hash function
is a function H : {0, 1}∗ → {0, 1}n that takes any string s and outputs a fixed-length,
uniformly random-looking string H(s), in such a way that the following tasks are
computationally infeasible without further knowledge:

� Preimage resistance: given H(s), find s.

� Second preimage resistance: given s, find s′ ̸= s such that H(s) = H(s′).

� Collision resistance: find s1, s2 such that H(s1) = H(s2).

An interactive sigma protocol like the one above can be turned into the a non-
interactive protocol by means of the Fiat–Shamir transform. The idea is that the
challenge e generated by Bob is “randomness Alice can’t control”. To make the protocol
non-interactive, we replace e by H(c) (that is, the hash of the data publicly exchanged
before the challenge step) that Alice can compute by herself. Indeed, this is randomness
Alice can’t control: the output of H is random-looking, and Alice cannot choose c to
make e assume a value of her choice, by preimage resistance.

We can then transform the protocol into the signing step of a signature scheme:
if Alice wants to sign a message m, she includes the message within the hashed data,
that is, let e = H(c||m) be the challenge (where c||m is the string concatenation of
c and m), and send (m, c, r) as signature in the end. Intuitively, the protocol proves
that the author of m knows sk, so it must be Alice.

Then, if another person (say Bob) wants to verify the signature, then he can re-
compute e using the same hash function H, and check that the response is correct.

One can show [PS96] that, if the identification scheme we start with has its desired
properties, then good properties on the resulting digital signature scheme also hold.

5.4 SQIsign

The cryptographic protocol motivating the study of the present thesis is SQIsign
[DKL+20], alongside with its higher-dimensional version. SQIsign is a digital signature
scheme based on isogenies of supersingular elliptic curves, derived from the SQIsign
interactive identification scheme that we are going to describe below.

The protocol involves two parties Alice and Bob, as usual. At the beginning, Alice
and Bob agree on public parameters:

� A large prime p ≡ 3 (mod 4), of size log p ≈ λ bits, where λ is a security
parameter.4 The prime p is chosen so that all the isogenies that need to be

4This generally means that the best known algorithms to break the security of the protocol have a
complexity of approximately 2λ operations.
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E0 Epk
φsk

Ecomm

φcomm

Echal

φchal

φresp

Figure 5.5: Isogenies in the SQIsign identification scheme

computed in the protocol are defined over Fp2 to maximise efficiency.

� A supersingular elliptic curve E0 defined over Fp2 with known endomorphism
ring. In practice, E0 is chosen to be the curve with j-invariant j(E0) = 1728,
which is indeed supersingular when p ≡ 3 (mod 4).

Alice is assigned a key pair formed by a public supersingular curve Epk and a secret
isogeny φsk : E0 → Epk. The interactive protocool is the following. When we say
random isogeny in the commitment and challenge phases, we mean uniformly random
within a set Scomm, Schal respectively.

Protocol 5.18 (The SQIsign identification scheme (sketch)).
� Commitment. Alice generates a random commitment isogeny φcomm : E0 →
Ecomm and sends Ecomm to Bob, keeping φcomm secret.

� Challenge. Bob generates a random challenge isogeny φchal : Epk → Echal and
sends the pair (φchal, Echal) to Alice.

� Response. Alice computes an isogeny φresp : Ecomm → Echal and sends φresp

to Bob. The isogeny is chosen so that no secrets are leaked: something more
complicated than outputting φresp = φchal ◦ φsk ◦ φ̂comm must be done. For the
same reason, the diagram in Figure 5.5 is not commutative.

� Verification. Bob checks that φresp is indeed an isogeny Ecomm → Echal. If the
verification is successful, Bob accepts Alice’s proof of identity.

The protocol satisfies the three properties of a sigma protocol of Remark 5.16.
The soundness of this protocol follows from the hardness of the supersingular one-

endomorphism problem 5.7, that is as hard as the supersingular isogeny problem:

Proposition 5.19. Protocol 5.18 is sound.

Proof. Suppose Bob accepts Alice’s response with probability close to 1. We want to
show that Alice knows an isogeny E0 → Epk.

Run the protocol twice and suppose Alice uses twice the same random commitment.
The two executions of the protocol give the following two transcripts: (Ecomm, φchal,

Echal, φresp), (Ecomm, φ
′
chal, E

′
chal, φ

′
resp). The isogeny φ̂′

chal ◦ φ
′
resp ◦ φresp ◦ φ̂chal is a

non-trivial endomorphism of Epk. This means Alice can solve Problem 5.7. As we said
when introducing this problem, solving it is equivalent to solving the isogeny problem,
that is, retrieving a secret key linked to Alice’s public key Epk.

Showing completeness and the zero-knowledge property needs instead a more de-
tailed description of the steps of the protocol.
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SQIsign2D-West

The SQIsign protocol as originally conceived in [DKL+20] is quite slow, though rel-
atively fast if compared to many other isogeny-based protocols. The use of the Em-
bedding Lemma 5.12 gave birth in 2024 to new versions of the protocol [DLRW24],
[BDD+24], [NO24], [DF24], which appear to be faster. We will examine the SQIsign2D-
West protocol [BDD+24], which bears the most similarities to the SQIsign sigma pro-
tocol we described above. The reference diagram is now in Figure 5.6.

Protocol 5.20 (The SQIsign2D-west identification scheme (sketch)).
Parameter selection. Let λ be a security parameter. The prime p is chosen so

that p ≡ 3 (mod 4), and p = f · 2e − 1 with e ≈ 2λ and f a small cofactor. The curve
E0 is chosen to be the Montgomery curve curve Y 2Z = X3 + XZ2 with j-invariant
j(E0) = 1728, that is supersingular and defined over Fp.

This choices imply that for all supersingular curves E/Falg
p , we can assume E to be

defined over Fp2 and Fp2-isogenous to E0, so that all the (p+1)-torsion is Fp2-rational
(see Remark 5.9). In particular, the 2e-torsion of E is defined over Fp2 , and so are all
the cyclic 2e-isogenies.

We also fix a large integer Ncomm ≥ 24λ and parameters eresp ≈ λ, echal ≤ e− eresp
such that 2eresp (resp. 2echal) is the number of possible responses (resp. challenges).

Commitment generation. The commitment isogeny φcomm is a random isogeny
of degree Ncomm.

Challenge generation. The challenge isogeny φchal is an isogeny of degree 2e

defined by a challenge integer chal < 2echal . More precisely, let m be the message
to be signed and H a length-echal cryptographically secure hash function, and define
chal = H(pk, Ecomm,m). Find deterministically a torsion basis (Pchal, Qchal) of Epk[2

e].
The isogeny φchal is the 2e-isogeny with kernel ⟨Pchal + [chal]Qchal⟩.

Response generation. The response isogeny φresp is an isogeny of (any) degree
Nresp < 2eresp . By techniques outside of the scope of this thesis, an isogeny φresp is
found so that it is random among the isogenies Ecomm → Echal of degree bounded by
2eresp . Alice sends Bob a convenient representation of φresp.

Verification. Bob checks that φresp is indeed an isogeny Ecomm → Echal.

Proposition 5.21. Protocol 5.20 is complete, sound and is conjectured to be zero-
knowledge.

Proof. The paper [BDD+24], where the protocol was introduced, proves these prop-
erties. Soundness is shown as in 5.19. Proving completeness amounts to specifying a
working algorithm for Alice’s signature and for Bob’s verification. In the sections that
follow, we’re going to detail Bob’s verification algorithm.

5.5 Application: towards verification in small devices

While the first generation of post-quantum standards was being selected by NIST,
new calls for proposals were published. One of them [NIS22] looks for digital signature
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Figure 5.6: Isogenies in the SQIsign2D-West scheme

algorithms, and SQIsign is a current candidate for it. Besides general-purpose signa-
ture schemes, the call also looks for signature schemes with small signatures and fast
verification, criteria respected by SQIsign and its variants.

The reason behind this is that oftentimes signatures are produced once (as an
example, new software is produced and distributed, and the signature is created along-
side the software itself) then verified multiple times by different devices. In particular,
embedded systems and Internet-of-Things devices are likely to have to perform cryp-
tographic verification algorithms, while having particularly limited memory resources.

The SQIsign protocol already prioritises fast verification over signing by design (see
also [CEMR24] for improvements in this direction), but it is significantly slower than
its higher-dimensional analogues. We are therefore interested in studying whether the
protocol is still compatible with verification being run in small devices once we bring
2-dimensional isogenies into the picture.

The verification algorithm

To describe the verification algorithm, we must first specify what’s the “convenient
representation” of φresp mentioned above, such that Bob can efficiently compute it to
run verification. In other words, we need to say what Alice’s signature contains.

Remark 5.22. Writing Nresp = 2neven · m with m odd, by Proposition 1.37 we can

factor the response isogeny as φresp = φ
(even)
resp ◦φ(odd)

resp , where φ
(odd)
resp : Ecomm → Eint is a

m-isogeny and φ
(even)
resp : Eint → Echal is a 2neven-isogeny.5

Recall that a 2neven-isogeny is efficiently computable as a chain of 2-isogenies, again
by Proposition 1.37. The odd part instead needs the Embedding Lemma 5.12: Alice
finds an auxiliary curve Eaux and an isogeny φaux : Ecomm → Eaux that fits in the lower

5It can happen that the last part of the 2-isogeny path determined by φ
(even)
resp coincides with the last

part of the path determined by φchal. The authors of [BDD+24] introduce some technical modifications
to handle this case and optimise computations. For simplicity of exposition, we will assume this case
doesn’t happen.
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commutative square of the diagram in Figure 5.6, such that

Φ =

(
φ
(odd)
resp −φ̂′

aux

φaux φ̂′

)
: Ecomm × E′

aux → Eint × Eaux

is a 2-dimensional 2eresp−neven-isogeny “embedding” the 1-dimensional φ
(odd)
resp .

Proposition 5.23 ([BDD+24], Algorithm 7). Alice has an algorithm to compute a
response isogeny φresp, decomposed in an even and an odd part as above, together with
the following data:
(i) a 2-dimensional 2eresp−neven-isogeny

Φ =

(
φ
(odd)
resp −φ̂′

aux

φaux φ̂′

)
: Ecomm × E′

aux → Eint × Eaux;

(ii) the curve Eaux and a deterministic torsion basis ⟨Paux, Qaux⟩ = Eaux[2
eresp ];

(iii) a torsion basis ⟨Pchal, Qchal⟩ = Echal[2
eresp ] such that:

(a) the points [2eresp−neven ]Pchal, [2
eresp−neven ]Qchal generate ker(φ̂

(even)
resp );

(b) the points Pint = φ̂
(even)
resp (Pchal), Qint = φ̂

(even)
resp (Qchal) generate Eint[2

eresp−neven ];

(c) kerΦ = ⟨(Pint, [2
neven ]Paux), (Qint, [2

neven ]Qaux)⟩.

Alice’s response is then σ = (Eaux, neven, Pchal, Qchal). This allows Bob to compute
the dual isogeny φ̂resp and recover Ecomm from the signature and the public data. If he
actually recovers Ecomm, the signature is considered valid. The verification algorithm
is then outlined in Algorithm 15.

In practice, Bob’s task amounts to performing some 2-isogeny chains, of which two
are in dimension 1, and another is in dimension 2.

2-isogeny chains

In Section 3.4 we presented a generic algorithm to compute a (2, 2)-isogeny step
φi : A→ A′ that works when both A and A′ are irreducible abelian varieties equipped
with level-2 theta coordinates.

In order to implement SQIsign2D verification, we need something more: we want
to compute a chain of (2, 2)-isogenies between abelian varieties, having products of
elliptic curves both as the domain and the final codomain. With high probability, the
intermediate steps of the chain involve irreducible abelian varieties, so the algorithms
of Section 3.4 can be used there. The authors of [DMPR23a] complete the picture, by
describing the following algorithms handling the first and the last step, where one of
the abelian varieties is a product of elliptic curves:

� a change of basis algorithm that takes two Montgomery elliptic curves E1, E2

along with bases of their 2n-torsion, and finds a suitable level-2 theta structure
ΘL on A = E1×E2 such that A[2] = K1(L)⊕K2(L) is a symplectic decomposition
and K2(L) = ker(φ0) is the kernel of the first step φ0 of the isogeny φ.
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Algorithm 15 Verification algorithm in SQIsign2D

Input: Epk, Ecomm, chal, σ = (Eaux, neven, Pchal, Qchal), a message m
Output: 1 if σ is a valid signature for m, 0 otherwise.
1: Compute torsion bases ⟨Paux, Qaux⟩ = Eaux[2

eresp ] and ⟨Ppk, Qpk⟩ = Epk[2
e] deter-

ministically (using an algorithm shared with Alice).
2: Retrieve challenge:

chal← H(pk, Ecomm,m)
Compute Echal ← Epk/ ⟨Ppk + [chal]Qpk⟩

3: Verify even part of the response:
P ′ ← [2eresp−neven ]Pchal, Q← [2eresp−neven ]Qchal

Compute φ̂
(even)
resp : Echal → Eint from its kernel ⟨P ′, Q′⟩.

Pint ← φ̂
(even)
resp (Pchal), Qint ← φ̂

(even)
resp (Qchal)

4: Apply the Embedding Lemma:
P2D ← (Pint, [2

neven ]Paux), Q2D ← (Qint, [2
neven ]Qaux)

Compute Φ̃ : Eint × Eaux → F1 × F2 with kernel ⟨(P2D, Q2D)⟩.
5: Verify F2

∼= Ecomm.
return 1 if the last check was successful, 0 otherwise.

� the algorithms we studied in the previous chapters: general codomain and evalu-
ation isogeny algorithms taking as input an abelian variety A with level-2 theta
structure ΘL, where K2(L) = ker(φ′) is the kernel of a (2, 2)-isogeny φ′ : A→ A′

where neither A nor A′ is a product, and outputting a representation of the
codomain A′ and a recipe to evaluate φ on any Q ∈ A.

� Special codomain and evaluation algorithms when either A or A′ is a product of
elliptic curves.

� A splitting algorithm that takes an input an A that is a product of elliptic curves
(with any theta structure, not necessarily the product theta structure of Remark
2.68) and outputs the two factors E1, E2 in Montgomery form.

Memory usage

The steps of SQIsign2D verification (Algorithm 15) are executed in sequence, so the
overall amount of memory needed to run the algorithm is roughly equal to the memory
used by the most memory-intensive step, that is, the 2-dimensional isogeny Φ′. Indeed,
the first step (generating a torsion basis) amounts to generating two independent ran-
dom points on an elliptic curve; the last one (verifying an isomorphism between two
elliptic curves) is just an equality check between their j-invariants. We’re left with
two 2-isogeny chains in dimension 1 and one in dimension 2, and the latter inherently
uses more space than the former. Indeed, points on a surface are represented by more
coordinates than points on a curve, and the kernel of a 2-isogeny in dimension g needs
g generators to be represented.
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Modelling a typical setting of resource-constrained devices (see e.g. [GHK+21]
in the context of verification of post-quantum signatures), we assume that the stack
memory available to the verification algorithm is limited to 8 kB. In real-life situations,
cryptographic verification is usually performed as a subroutine of a larger program, so
the stack memory is shared with other tasks and the available space may be even
smaller.

According to [BDD+24], depending on the security level λ, the bitsize of the prime
p can assume the values

t = ⌈log2 p⌉ ∈ {248, 376, 500}.

A Kummer point over Fp2 (stored as four Fp2 elements, that is, eight Fp elements) then
takes up 8t bits = t bytes.

This means there’s space for 8192/t ∈ [16, 33] Kummer points in memory to safely
run the verification algorithm. One can check by inspection that the steps of the
(2, 2)-isogeny chain listed in Section 5.5 need less than 4 auxiliary Kummer points at
the same time to be executed (see also [Dar24, Appendix B.1] for a change of basis
using even less memory); as above, the steps are run sequentially, so the auxiliary
memory of one step can be erased and rewritten in the subsequent step. This suggests
implementing SQIsign2D verification in small devices should largely be possible; a more
precise analysis would need a reference implementation of the protocol and is subject
to unpredictable variations due to the specific architecture of the device hardware.

Strategies

The current reference implementation of (2, 2)-isogeny chains in SageMath [DMPR23b]
applies a space-time tradeoff (suggested in [DJP11] for 1-dimensional chains of 2-
isogenies) to save time at the expense of memory to perform the computation of the
chain. Given a (2, 2)-isogeny chain of length n, say φn ◦ · · · ◦ φ1, let B0 = (S0, T0) be
such that S0, T0 are 2n-torsion points with ⟨[4]S0, [4]T0⟩ = ker(φn · · ·φ1), and kerφi
is given by the points of [2n−i]Bi−1 with Bi = φi(Bi−1), i = 1, . . . , 4. At each step
we need to compute the kernel generators of φi via some isogenies and doublings (or
better, the 8-torsion points above them), that is, we need to compute the leaves of the
tree in Figure 5.7.

The naive approach implied by Proposition 1.37 would require computing all the
Bi from Bi−1, then their multiples [2n−i]Bi from Bi at each step, which would have a
total cost of O(n2) point doublings in the variety. This corresponds to walking along
the tree following the path in figure 5.8a.

However, we can do better and walk instead along the tree of Figure 5.7, which has
n log2 n nodes, at the cost of storing the branching points to reuse them to optimise
computations. At a given time, this strategy requires 2 · ⌈log2 n⌉ points in memory.

Coming back to the memory analysis above, at the lowest security level, with t =
248, considering n = ⌈log2 p⌉, the number of branching points to store is 2·⌈log2 248⌉ =
16, which could fit within the available storage space. At higher security levels, this
becomes inapplicable.
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Figure 5.7: Computation tree for a 2n-isogeny, n = 4, in dimension g = 2.
B0 = (S0, T0) is a pair of 2n+2-torsion points such that ([4]S0, [4]T0) is the kernel of
φn ◦ · · · ◦ φ1.

(a) Naive strategy (b) Balanced strategy

An intermediate solution could be to use an algorithm that splits the chain into
consecutive 4-isogenies instead of 2-isogenies (see Section 3.4). In this case, we’d have
to store three kernel points instead of two: S0, T0, S0 + T0; however, the number of
branching nodes to store would be now ⌈log4 t⌉, that is, it’d be halved, and this could
be a good compromise between time and memory efficiency.
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