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Main character: Pairings on elliptic curves

Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

eℓ : G1 ×G2 → GT ⊆ k×

(P,Q) → eℓ(P,Q)
ℓ ∈ N

P

Q

e(P,Q)

machinery...

Eciently computable: e.g. eℓ(P,Q) = fℓ,P (Q)m

Polynomial in the coordinates of P,Q.

Destructive use: breaking discrete logs in elliptic
curves (MOV reduction)

Consructive use:
▶ Advanced functionalities in encryption, signatures,

pseudo-random functions
▶ Zero-knowledge proofs
▶ tool in Isogeny-based cryptography
▶ ...
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Motivation: isogeny-based crypto
Pairings are used in dierent scenarios in cryptography:

curve-based and pairing-based cryptography:
⇝ freedom to choose highly optimized parameters:

▶ eld characteristic p = char k with fast arithmetic
▶ P,Q on a xed curve E with small/nice coecients

isogeny-based crypto: no control over specic p, E for fast arithmetic
▶ E usually a random supersingular curve over Fp2 , with p large
▶ p chosen so that p+ 1 has small prime factors ℓi ⇝ degree-ℓi isogenies are fast to compute

⇝ need fast generic pairing.

Cost of generic degree-ℓ pairings per bit of ℓ:
Tate pairing Weil pairing

State of the art1 using Miller’s algo 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24]2 ⇝ our work 9M + 6S + 16A

1Cai, Lin, Zhao, Pairing Optimizations for Isogeny-based Cryptosystems, eprint.iacr.org/2024/575
2Robert, Fast pairings via biextensions and cubical arithmetic, eprint.iacr.org/2024/517
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Appendix: divisors

Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

The divisors of degree 0 on E form a group:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Given a rational function f ∈ Fq(E), we attach to it a principal divisor

div f =


P∈E

ordP (f) · (P )

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼

−−−→ Pic0(E) = Div0(E)/{principal divisors}
P −→ [(P )− (0E)]



How pairings are computed in practice: Miller’s algorithm
Working example: Fix a degree ℓ, a base eld k = Fq containing ℓ-th roots of unity µℓ.
The non-reduced Tate-Lichtenbaum pairing is dened as

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ (P, [Q]) → fℓ,P (Q)

[To avoid (k×)ℓ-ambiguity, the reduced Tate pairing et,ℓ(P,Q) = fℓ,P (Q)
q−1

ℓ is often used.]

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satises

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P )− ℓ (−P ) ∈ Div0(E)

Other pairings (Weil, (optimal) ate...) are also dened via Miller functions.

These rational functions satisfy

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P )

with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain (1, 2, . . . , ℓ)

Step by step compute (P, f1,P (Q)), ([2]P, f2,P (Q)), . . . , ([ℓ]P, fℓ,P (Q))

[i]P

[j]P

[i+j]P
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Working with x-only arithmetic
To compute line functions lR,S , vR for Miller’s algorithm,
we represent points on E as P = (XP : YP : ZP ).
The group law tells us how to add points P,Q together.
What if we forget about Y ?

YP = ±


g(XP , ZP ) ⇝ sign ambiguity:

(XP : ZP ) represents ± P

P

−P

Q

−Q

P +Q

P −QDespite ±, arithmetic is still possible! These operations on E/± are well-dened:

xDBL : P → [2]P, xADD : (P,Q;P −Q) → P +Q

...and quite fast to perform. Montgomery model: only 3 mult, 2 squarings.

xDBL :























Q = (XP + ZP )
2

R = (XP − ZP )
2

S = Q−R

[2]P = (QR : S(R + a+2

4
S))

xADD :























U = (XP − ZP )(XQ + ZQ)

V = (XP + ZP )(XQ − ZQ)

XP+Q = ZP−Q · (U + V )2

ZP+Q = XP−Q · (U − V )2
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Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P → [ℓ]P
⇝ possible using x-only arithmetic!

We dened operations on E/±:

xDBL : P → [2]P

xADD : (P1, P2;P1 − P2) → P1 + P2

To compute scalar multiplication,
we combine them into a

Ladder : (ℓ, P ) → ([ℓ]P, [ℓ+ 1]P ).

Generalization useful later:3

3PtLadder with oset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

. . . . . .

[2n]P [2n+ 1]P

[ℓ]P [ℓ+ 1]P

. . . . . .

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDP

3De Feo, Jao, Plût, Towards quantum-secure cryptosystems with isogenies, eprint.iacr.org/2011/506
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Core idea: monodromy

Walk on the helix so that the projection below is a loop.
=⇒ Above, we’re walking up (or down) one oor!

On the curve: we compute 0E , P, [2]P, . . . , [ℓ]P = 0E ...back to the start

By E
∼
−→ Pic0(E), the torsion relation [ℓ]P = 0 becomes



ℓ(0E)− ℓ(−P )


= 0.

Now walk above: D = ℓ(0E)− ℓ(−P ) = div fℓ,P ̸= 0 in Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Miller’s algorithm computes this monodromy: while walking through 0E , P, [2]P, . . . , [ℓ]P ,
accumulates divisor information fℓ,P (Q) =



j l[ij ]P,[i′j ]P (Q)/v[ij ]P (Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP )

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!!
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Montgomery ladders almost compute pairings
P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)
−−−−−−−−−−−−−−−→

[ℓ]P = (XℓP , 0) dier by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) dier by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP )

ℓ·(¬ℓ+1)

(4xP )ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on 3

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

3notation: ¬ℓ = bitwise negation of the bit representation of ℓ
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Montgomery ladders compute pairings
Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: dierent projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = ZP−Q (U + V )2 ,

ZP+Q = XP−Q (U − V )2 .

⇝

U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V )2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V )2 .

We call this cubical dierential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) → (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′

Q/λ
′

P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD

⇝ easy optimized, constant-time implementation. 4

Inverses can be pre-computed and batched: only one inversion per pairing
4Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings
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Other pairings
Just seen: from one Montgomery 3-point ladder with edited cADD ⇝

Non-reduced Tate pairing eT,ℓ(P,Q) = fℓ,P (Q) from projective coordinates (XℓP , ZℓP+Q).

What about other pairings? Also recoverable from ladders & some ratios!

Reduced Tate pairing: et,ℓ(P,Q) = fℓ,P (Q)
pk−1

ℓ :
just exponentiate after nding eT,ℓ via cLadder.

Weil pairing
eW,ℓ : E[ℓ]× E[ℓ] → µℓ (P,Q) → fℓ,P (Q)/fℓ,Q(P )

This requires 2 · non-reduced Tate pairings ≈ 2 · cLadder.

ate pairing

eA,ℓ : G2 ×G1 → µℓ (P,Q) → fλ,P (Q)
qk−1

ℓ

with λ ≡ q (mod ℓ), G1 = E[ℓ](Fk
q ), and G2 = E[ℓ] ∩ ker(πq − [q]).

Here, monodromy between one (shorter) cLadder and Frobenius πq:
Projectively, πq(P +Q) = [q]P +Q = cLadder(λ, P,Q;P −Q).
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Possible speedups?
Main idea of the tricks we saw: replace xADD with some cADD

where we change the “ane” scaling λ in of (λ ·XP+Q,λ · ZP+Q).

And the Montgomery ladder?

Good when constant-time is needed, code size is constrained, fast enough

Otherwise, not the fastest way to scalar-multiply ℓ · P

Questions:

Can we replace it with faster dierential addition chains?

Or maybe double-and-add chains?

Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer seems to be no :(
Crucial in cubical ladders: the dierence points in xAdd(P,Q;P −Q) are xed.

This happens in Montgomery Ladders, doesn’t apply to DACs

workarounds: use full-coordinate (X,Y, Z) additions ⇝ expensive.
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Algebra alert:

Some (high-level) theory behind the result



Cubical arithmetic
We saw earlier:

ladder with usual xADD → (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff

ladder with cADD → (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L⊗ t∗P2

L⊗ t∗P3
L⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L⊗ t∗P1+P3

L⊗ t∗P1+P2
L⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3

Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!
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Cubical arithmetic as a way to get Miller functions
Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

div fℓ,P = ℓ(0E)− ℓ(−P ).

Projective coordinates X,Z are objects living in a line bundle L.

Even though they’re not meromorphic functions (like x, y, 1) in k(E), they have a zero locus.
For example, 0E = (1 : 0): ⇝ Z has a zero at 0E (...with multiplicity 2)
⇝ ∃ reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P )) = 2(−P ).

Idea: compute some ratio g(·) =
Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
. Hope: we get

g ∈ k(E), div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · ·− 2(−Qm)

Generally not well-def: must choose Pi, Qj carefully, compatible with cubical arithmetic.

Miller fns: P ∈ E[ℓ]. Then fℓ,P : R →
Z(R + ℓP )Z(R)ℓ−1

Z(P )ℓ
has divisor 2



ℓ(0)− ℓ(−P )

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End of the theory!

Some applications now



Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N ], with N smooth.

Let R ∈ E[N ]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing eN : E[N ]× E[N ] → µN .
[In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

Alternating: e(P, P ) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N ]

Some details:

ζ0 = eN (P,Q) has order N

hb = eN (R,P ) = eN ([a]P + [b]Q,P ) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

DLog in E[N ]
↓ pairing

DLog in µN , much easier

✓ Very useful trick in isogeny protocols. Achieved ∼ 40% cost reduction w.r.t. Miller.
e.g. point compression (SIKE †, SQIsign2D): (a, b) is shorter than (XR, ZR).
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Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N ]× E[N ] → µN .

Non-degenerate =⇒ e(P,Q) has order N i P,Q are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =


i ℓi

Sample random points P,Q

Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P → [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verication
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.

Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we nd P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.
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Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benets of the new approach on pairing-friendly curves?

⇝ Parallel paper: [LRZZ25] 4 compares with Miller’s algorithm on pairing-friendly curves.

– No denominator elimination in cubical arithmetic,

+ though arithmetic itself is faster if points lie in subelds Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:

Odd prime embedding degree k (e.g. BW13, k = 13)

4Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
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Further directions

The theory of cubical arithmetic applies much more generally:

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

Also: in specic contexts, alternative computations to cLadder are competitive
(e.g. DoubleAndAdd, NAFs, ...).

Thank you for listening! Questions?
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Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) → ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) → mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP ) = P + T = (ZP , XP )

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP ) = P + T = (AXP −BZP , AZP −BXP )

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′

Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!


