Montgomery ladders already compute pairings

Alessandro Sferlazza
joint work with: G. Pope, K. Reijnders, D. Robert, B. Smith
https://eprint.iacr.org/2025/672

Technical University of Munich

Wednesday 11 June 2025
Aztec Labs, Cryptography seminar

Main character: Pairings on elliptic curves

Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties
€y GlXGQ — GTgk‘x

(P.Q) — elP,Q) teN

o Efficiently computable: e.g. e/(P, Q) = fo,p(Q)™
Polynomial in the coordinates of P, Q.

machinery... o Destructive use: breaking discrete logs in elliptic
’ curves (MOV reduction)
o Consructive use:

"-fgp’ Q) » Advanced functionalities in encryption, signatures,
o :>? . pseudo-random functions

) » Zero-knowledge proofs

: : : : : » tool in Isogeny-based cryptography

> ..

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 1/19

Motivation: isogeny-based crypto
Pairings are used in different scenarios in cryptography:
@ curve-based and pairing-based cryptography:
~ freedom to choose highly optimized parameters:

» field characteristic p = char k with fast arithmetic
» P,Q on a fixed curve E with small/nice coefficients

@ isogeny-based crypto: no control over specific p, E for fast arithmetic
» E usually a random supersingular curve over 2, with p large
» p chosen so that p 4+ 1 has small prime factors ¢; ~~ degree-¢; isogenies are fast to compute

~> need fast generic pairing.

Cost of generic degree-¢ pairings per bit of £:

Tate pairing | Weil pairing

State of the art! using Miller's algo | 11.3M + 7.7S + 20.7A
[Rob24]2 ~ our work 9M + 6S + 16A

2 - Tate pairing

1Cai, Lin, Zhao, Pairing Optimizations for Isogeny-based Cryptosystems, eprint.iacr.org/2024/575
2Robert, Fast pairings via biextensions and cubical arithmetic, eprint.iacr.org/2024/517
Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 2/19

Appendix: divisors

Let E/F, be an elliptic curve. A divisor on E is a formal sum
D=ny-(P)+...+n.-(FP) n, €%Z,P,e¢ E
The divisors of degree 0 on E form a group:
Div'(E) = {D =n1(P) + ... +n.(P.) | ny + ... +n, = 0}.

Given a rational function f € F,(E), we attach to it a principal divisor

divf = 3 ordp(f)- (P)
PEE
where ordp(f) is the multiplicity of P as a zero of f if > 0, and as pole of f if <0

Any E elliptic curve is isomorphic to a quotient of Div’(E):
E —~— Pi%E) =Div(E)/{principal divisors}
P — [(P)—(0g)]

How pairings are computed in practice: Miller's algorithm

Working example: Fix a degree ¢, a base field kK = I, containing /-th roots of unity 1.
The non-reduced Tate-Lichtenbaum pairing is defined as

ere: E[()(k) x E(k)/[(E(k) = & /()" (P,[Q)= fer(@)
[To avoid (k*)‘-ambiguity, the reduced Tate pairing e, ¢(P, Q) = for.p(Q)*T 7 is often used.]
where fy p € k(E) is a Miller function attached to P, i.e. satisfies

div fo.p = (€= 1) (0g) + ([]P) — £ (~P) € Div’(E)
Other pairings (Weil, (optimal) ate...) are also defined via Miller functions.

These rational functions satisfy

fivgp = fip - fip - (gpye/vye) 1P
with [g g = line through R and S, and vg = vertical line through S. e :
Miller's algorithm: compute f; p(Q) by: %H]P
o Fix an addition chain (1,2,...,¢)

® Step by step compute (P, f1.p(Q)), ([2]P, f2,p(Q)), ..., ([(]P, for(Q))

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 3/19

Working with x-only arithmetic

To compute line functions Iz g, vg for Miller's algorithm,
we represent points on E as P = (Xp:Yp: Zp).

The group law tells us how to add points P, () together. P
What if we forget about Y'? S G

Yp =++/g(Xp,Zp) ~» sign ambiguity:
(Xp: Zp) represents + P
Despite +, arithmetic is still possible! These operations on E/+ are well-defined:
XDBL: P — [2]P, XADD: (P,Q;P—-Q)— P+Q
...and quite fast to perform. Montgomery model: only 3 mult, 2 squarings.

Q= (Xp+2Zp)?
R=(Xp— Zp)?
S=0-R XADD:

U=(Xp—-2Zp)(Xq+Zo)

V=(Xp+2Zp)(Xq — Zq)
xDBL: JXa ?

Xpiq=2Zp-q - (U+V)?
Zpiq=Xp_q (U-V)?

2]P = (QR: S(R+ “£29))

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 5/19

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P+ [¢]P [P
~ possible using z-only arithmetic!
We defined operations on E/+: [2n] P

XDBL: P v [2]P -~

XADD: (P, Py; P — Py) v Py + P, xDBL
To compute scalar multiplication,
we combine them into a
LADDER: (¢, P) — ([{]P, [¢ + 1]P).
. 3 P
Generalization useful later:
Or

3PTLADDER with offset Q.
Needs extra input +(P — Q).

(€ +1)P

[2n 4+ 1]P

XADD p

®De Feo, Jao, Plit, Towards quantum-secure cryptosystems with isogenies, eprint.iacr.org/2011/506

Alessandro Sferlazza (TUM) Ladders compute pairings

11/06/2025

7/19

Core idea: monodromy

Walk on the helix so that the projection below is a loop.

= Above, we're walking up (or down) one floor!

W On the curve: we compute Og, P, [2]P, ..., [{]P = Op ..back to the start

\> By E = Pic’(E), the torsion relation [¢(|P = 0 becomes [¢(0g) — £(—P)] = 0.
AP

4 Now walk above: D = ((0g) — £(—P) = div fop # 0 in Div(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

—

>

Miller's algorithm computes this monodromy: while walking through Og, P, [2]P, ..., [(]P,
accumulates divisor information f; p(Q) = [1; l[i].]p7[i}]p(Q)/v[ij]p(Q).
Monodromy already appears in the Montgomery ladder alone:
@ Start with Og = (1:0) and P = (Xp : Zp)
® Perform LADDER(P,{): get [(]P = (X¢p :0) = (1:0)
~» Xyp is a monodromy factor. Projective coordinates carry meaning!!

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 8/19

Montgomery ladders almost compute pairings
P=(xp:1)€El], Q=(zg:1), P—Q=(rp_g:1)
We look at the 3PTLADDER where P, interact. Observe monodromy factors:
Op = (1,0) 3prLaboer(e,P,@;P—Q) [P = (Xep,0) differ by A\p = Xyp
Q= (mQ, 1) [E]P +Q = (Xgp+Q, ng+Q) differ by)\Q = ZgP+Q
From this we get the Tate pairing! squared, + garbage
Ao/Ap = er (P, Q)* - sTUFF
(4$P)e-(ﬁe+1)
(zp) (42q) (dxp—q)"
@ initial input coordinates

More precisely, STUFF = 3

7 depends on

@ bit representation of /.

Solution: compute STUFF and divide it out...
or better: edit the LADDER to get rid of STUFF.

3notation: —¢ = bitwise negation of the bit representation of ¢

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 9/19

Montgomery ladders compute pairings

Remember XADD(P,Q; P — Q) = (Xp+Q, Zp+q).
Modify into CADD: different projective scaling of the output (Xpig, Zp+q)

UV = UV =
Xpig = ZpqU+V)?, ~ Xpg = (Xp o) - (U+V)?,
Zprq = XpqU-V)*. Zpiq = (4Zpq) - (U-V)

We call this cubical differential addition.

Set cDBL = xDBL and replace CADD into the ladder.

Then CLADDER((,P,Q; P — Q) — ((P,{P+ Q) in (X, Z)-coordinates:
0/Xp = Zipy+q/Xep = er (P, Q)? without extra STUFF!

@ The square is not a problem when ¢ is odd v/ even — small trick to avoid the square
@ Just minor tweak needed in the conversion XADD — cADD

~+ easy optimized, constant-time implementation.
@ Inverses can be pre-computed and batched: only one inversion per pairing

*Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings
Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 11/19

Other pairings

Just seen: from one Montgomery 3-point ladder with edited CADD ~~

Non-reduced Tate pairing er¢(P, Q) = fo.p(Q) from projective coordinates (X¢p, Zip1q).

What about other pairings? Also recoverable from ladders & some ratios!

k_
® Reduced Tate pairing: e;¢(P, Q) = f&P(Q)pTl;
just exponentiate after finding e7y via CLADDER.
o Weil pairing

ewye: Bl X B[] = e (P,Q) = fe.p(Q)/ feq(P)
This requires 2 - non-reduced Tate pairings ~ 2 - CLADDER.
® ate pairing

k_y
ear: Go x Gy — py

(P,Q) = frr(@Q) T
with A = ¢ (mod ¢), Gy = E[E](IF’;) and Go = E[{] Nker(my — [q]).
Here, monodromy between one (shorter) CLADDER and Frobenius 7y:
Projectively, m,(P + Q) = [¢]P + @ = CLADDER(A, P,Q; P — Q).
Alessandro Sferlazza (TUM)

Ladders compute pairings 11/06/2025

12/19

Possible speedups?
Main idea of the tricks we saw: replace XADD with some CADD
where we change the “affine” scaling A in of (A Xp, 0, A Zpiq).
And the Montgomery ladder?
@ Good when constant-time is needed, code size is constrained, fast enough
@ Otherwise, not the fastest way to scalar-multiply £ - P
Questions:
o Can we replace it with faster differential addition chains?
@ Or maybe double-and-add chains?

® Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer seems to be no :(

Crucial in cubical ladders: the difference points in XADD(P, Q; P — @) are fixed.
@ This happens in Montgomery Ladders, doesn't apply to DACs
@ workarounds: use full-coordinate (X,Y, Z) additions ~» expensive.

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025

13/19

Algebra alert:
Some (high-level) theory behind the result

Cubical arithmetic

We saw earlier:

o ladder with usual XADD +— (XP+Q, ZP+Q) ~ ng+Q/Xgp = eT,g(P, Q)2-STUI<‘F
o ladder with cCADD — (XP+Q/N7 ZP+Q/N) ~ ng+Q/Xgp = eT’g(P, Q)2
There's a preferred projective scaling in the output of XADD. Not a coincidence!

Algebraic statement: if I'(L) = (X, Z), there’s a canonical isomorphism of line bundles
th LOtp LRt LOth L Zth i p LOtpip LOtp i LOL

P+ Ps P+ P+ Ps
Py P4 Py
P, P+ P
0
E P,

Alessandro Sferlazza (TUM)

Read as follows: t1L <— scaling A of coordinates Xp, Zp
Fix scaling of 7 vertices,
isomorphism above = canonical choice for the 8th
Then, cCADD and cDBL are special cases:
Let (P1, P2, P3) = (P, Q,—Q). The vertices
(P7 Qa _Qa P7 07 P+Q7 P_Q7 0)
Fixing P,Q, P — @ we get P 4+ @ uniquely!

Ladders compute pairings 11/06/2025 14 /19

Cubical arithmetic as a way to get Miller functions

Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:
div f&p = E(OE) — f(—P)

Projective coordinates X, Z are objects living in a line bundle L.

Even though they're not meromorphic functions (like z,y,1) in k(E), they have a zero locus.
For example, 0 = (1: 0): ~» Z has a zero at O (...with multiplicity 2)
~» 3 reasonable notion of divisor of zeroes:

divo(Z) = 2(0p), dive(Z(- + P)) = 2(—P).

Z(-+P)---Z(-+ Pp)
Z(+Q1) - Z(+Qm)
gek(E), divg=2P) 4 +2(~Py) = 2(=Q1) — - — 2(~Qu)
Generally not well-def: must choose F;, (); carefully, compatible with cubical arithmetic.
Z(R+(P)Z(R)!
Z(P)*

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 15/19

Idea: compute some ratio g(-) =

Hope: we get

Miller fns: P € E[l]. Then fip: R —

has divisor 2(¢(0) — £(—P))

End of the theory!

Some applications now

Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
® Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [0]Q.
Exploit the Weil pairing en: E[N]| X E[N] — un.
[In isogeny applications, the (2xfaster) Tate pairing often shares the same properties:]
o Alternating: e¢(P,P) =1
o Non-degenerate: if P has order N, there is @ s.t. e(P,Q) has order N.
e(P,Q) has order N <= (P, Q) = E[N]
Some details:
Co=en(P,Q) has order N DLog in E[N]
o o = J, pairing
fy = en (R, P) = en(la]7" + [b]Q’ P) = C?I DLog in puy, much easier
ha = en(R,Q) = en([a]P + [1]Q,Q) = (
v Very useful trick in isogeny protocols. Achieved ~ 40% cost reduction w.r.t. Miller.
e.g. point compression (SIKE t, SQIsign2D): (a,b) is shorter than (Xgr, ZR).

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025

16 /19

Further applications: torsion bases, supersingularity testing
Weil pairing: ew,n: E[N] X E[N] = pn.
o Non-degenerate = ¢(P, Q) has order N iff P,Q are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =[], ¢;
@ Sample random points P, Q)

® Do they form a torsion basis? Test order of (P, Q) € un-.
[alternative: trial multiplication P +— [N/{;]P. Pairing 4 order testing is much faster v']
Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/F,, ~» public key validation v']
o Let E/F,2 be a supersingular curve with E(F,2) = (Z/(p + 1)Z)*.

o Try to generate a (p + 1)-torsion basis (#1). If SUCCESS, return “E' is supersingular”.

® Retry few times. FAIL if we find P with [p + 1]P # 0.

~~ Probability of false negatives: 0. Probability of false positives: negligible.
v' CSIDH uses even embedding degree k = 2 ~» only ~ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025

17 /19

Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benefits of the new approach on pairing-friendly curves?

~~ Parallel paper: [LRZZ25] * compares with Miller's algorithm on pairing-friendly curves.

— No denominator elimination in cubical arithmetic,
+ though arithmetic itself is faster if points lie in subfields F; C Fx

~> in some cases, cubical arithmetic can be faster than Miller's algorithm:
® Odd prime embedding degree k (e.g. BW13, k = 13)

“Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025

18/19

Further directions

The theory of cubical arithmetic applies much more generally:

o Other curve models: Theta, Weierstrass, Edwards, . ..

o Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
~+ Cubical pairings already implemented in AVlsogenies (Magma), libraries in Sagemath

Also: in specific contexts, alternative computations to CLADDER are competitive
(e.g. DOUBLEANDADD, NAFs, ...).

Thank you for listening! Questions?

Alessandro Sferlazza (TUM) Ladders compute pairings 11/06/2025 19/19

Even-degree pairings
Consider an even integer £ = 2m.
P e ElY|(k), Q€ E(k), CLADDER(Y, P,Q,P — Q) — (P, {P+Q
We can get the squared Tate pairing: Ap/Ag = X¢p/Zip+q = ere(P,Q)?
The pairing has order dividing ¢ = 2m ~- the square loses one bit of information.
Step 1: only compute ladder of order m = ¢/2.
CLADDER(m, P,Q,P — Q) — mP, mP + Q

Step 2: Linear translations. T'= mP is a point of order 2: on the Kummer line,
translation by 7" induces an involution. It acts linearly on coordinates, for example

T:(Otl). T*(XP,ZP):PJFT:(ZP,XP)
T:(A:B)#(Oil) T*(XP,ZP):P—I—T:(AXP—BZP,AZP—BXP)

mP + T is projectively = 0 ~» monodromy factor N

Step 3: Monodromy. (mP + Q) + T is projectively = ~» monodromy factor Ar,

Ap/AQ = Xip11/Zmp+@)+1 = ere(P; Q) without the square!

