Montgomery ladders compute pairings

Alessandro Sferlazza joint work with: G. Pope, K. Reijnders, D. Robert, B. Smith https://eprint.iacr.org/2025/672

Technical University of Munich

Thursday 3 July 2025, GRACE seminar, Inria Saclay

Main character: pairings on elliptic curves

Elliptic curves:
$$E: y^2 = x^3 + ax + b$$
, with $a, b \in \mathbb{F}_q$

Points $(x,y) \in \overline{\mathbb{F}_q}$ on the curve (+ a neutral element 0_E) form a group.

Main character: pairings on elliptic curves

$$\mbox{Elliptic curves:} \qquad E: \quad y^2 = x^3 + ax + b, \qquad \mbox{with } a,b \in \mathbb{F}_q$$

Points $(x,y) \in \overline{\mathbb{F}_q}$ on the curve (+ a neutral element 0_E) form a group.

Pairings are maps from subgroups/quotients of some ${\cal E}$ to a finite field:

$$e_{\ell} \colon G_1 \times G_2 \to G_T \subseteq \mathbb{F}_q^{\times}$$

 $(P,Q) \mapsto e_{\ell}(P,Q)$ $\ell \in \mathbb{N}$

Main character: pairings on elliptic curves

Elliptic curves:
$$E: \quad y^2 = x^3 + ax + b, \quad \text{with } a, b \in \mathbb{F}_q$$

Points $(x,y) \in \overline{\mathbb{F}_q}$ on the curve (+ a neutral element 0_E) form a group.

Pairings are maps from subgroups/quotients of some ${\cal E}$ to a finite field:

$$e_{\ell} \colon G_1 \times G_2 \to G_T \subseteq \mathbb{F}_q^{\times}$$
 $(P,Q) \mapsto e_{\ell}(P,Q)$
 $\ell \in \mathbb{N}$

They satisfy

- Bilinearity: $e(P, Q + Q') = e(P, Q) \cdot e(P, Q')$
- Nondegeneracy: for all $P \in G_1, Q \in G_2$ the maps $e(P,\cdot)$ and $e(\cdot,Q)$ aren't constantly trivial.
- ...and many other useful properties

Pairings: useful in different scenarios in cryptography.

<u>Destructive</u> use: transfer discrete logs on a curve E to easier discrete logs on \mathbb{F}_q^{\times}

Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on \mathbb{F}_q^{\times}

Constructive use:

- advanced functionalities in encryption, signatures, ZK proofs...
 - \checkmark Usually, freedom to choose base field \mathbb{F}_p , curve $E \leadsto$ optimize for fast arithmetic

Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on \mathbb{F}_q^{\times}

Constructive use:

- advanced functionalities in encryption, signatures, ZK proofs...
- \checkmark Usually, freedom to choose base field \mathbb{F}_p , curve $E \leadsto$ optimize for fast arithmetic
- tool in isogeny-based cryptography. Here, no control over p, E:
 - ightharpoonup E usually a random supersingular curve over \mathbb{F}_{p^2} ,
 - p subject to constraints \neq speed (namely, p+1 smooth for fast \mathbb{F}_{p^2} -isogenies)
 - × fast arithmetic not always available.

Pairings: useful in different scenarios in cryptography.

<u>Destructive</u> use: transfer discrete logs on a curve E to easier discrete logs on \mathbb{F}_q^{\times}

Constructive use:

- advanced functionalities in encryption, signatures, ZK proofs...
- \checkmark Usually, freedom to choose base field \mathbb{F}_p , curve $E \leadsto$ optimize for fast arithmetic
- tool in isogeny-based cryptography. Here, no control over p, E:
 - E usually a random supersingular curve over \mathbb{F}_{p^2} ,
 - p subject to constraints \neq speed (namely, p+1 smooth for fast \mathbb{F}_{p^2} -isogenies)
 - × fast arithmetic not always available.
 - → Need: make generic pairings fast.

Pairings: useful in different scenarios in cryptography.

<u>Destructive</u> use: transfer discrete logs on a curve E to easier discrete logs on \mathbb{F}_q^{\times} Constructive use:

- advanced functionalities in encryption, signatures, ZK proofs...
- \checkmark Usually, freedom to choose base field \mathbb{F}_p , curve $E \leadsto$ optimize for fast arithmetic
- ullet tool in isogeny-based cryptography. Here, no control over p,E:
 - E usually a random supersingular curve over \mathbb{F}_{p^2} ,
 - p subject to constraints \neq speed (namely, p+1 smooth for fast \mathbb{F}_{p^2} -isogenies)
 - × fast arithmetic not always available.
 - → Need: make generic pairings fast.

generic ℓ -pairing: cost/bit	Tate pairing	Weil pairing
State of the art ¹ using Miller's algo	11.3M + 7.7S + 20.7A	2 · Tate pairing
$[Rob24]^2 \rightsquigarrow our work$	9M+6S+16A	

¹Cai, Lin, Zhao, Pairing Optimizations for Isogeny-based Cryptosystems, eprint 2024/575

²Robert, Fast pairings via biextensions and cubical arithmetic, eprint2024/517

Preliminaries: divisors

<u>Divisors:</u> Let E/\mathbb{F}_q be an elliptic curve. A divisor on E is a formal sum

$$D = n_1 \cdot (P_1) + \ldots + n_r \cdot (P_r)$$
 $n_i \in \mathbb{Z}, P_i \in E$

Divisors form a group. We focus on the subgroup of divisors of degree 0:

$$Div^{0}(E) = \{ D = n_{1}(P_{1}) + \ldots + n_{r}(P_{r}) \mid n_{1} + \ldots + n_{r} = 0 \}.$$

Preliminaries: divisors

<u>Divisors:</u> Let E/\mathbb{F}_q be an elliptic curve. A divisor on E is a formal sum

$$D = n_1 \cdot (P_1) + \ldots + n_r \cdot (P_r) \qquad n_i \in \mathbb{Z}, P_i \in E$$

Divisors form a group. We focus on the subgroup of divisors of degree 0:

$$Div^{0}(E) = \{ D = n_{1}(P_{1}) + \ldots + n_{r}(P_{r}) \mid n_{1} + \ldots + n_{r} = 0 \}.$$

<u>Principal divisors:</u> Given $f \in \overline{\mathbb{F}}_q(E)$, we attach to it a principal divisor

$$\operatorname{div} f = \sum_{P \in E} \operatorname{ord}_{P}(f) \cdot (P)$$

where $\operatorname{ord}_P(f)$ is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Preliminaries: divisors

<u>Divisors:</u> Let E/\mathbb{F}_q be an elliptic curve. A divisor on E is a formal sum

$$D = n_1 \cdot (P_1) + \ldots + n_r \cdot (P_r) \qquad n_i \in \mathbb{Z}, P_i \in E$$

Divisors form a group. We focus on the subgroup of divisors of degree 0:

$$Div^{0}(E) = \{ D = n_{1}(P_{1}) + \ldots + n_{r}(P_{r}) \mid n_{1} + \ldots + n_{r} = 0 \}.$$

<u>Principal divisors:</u> Given $f \in \overline{\mathbb{F}}_q(E)$, we attach to it a principal divisor

$$\operatorname{div} f = \sum_{P \in E} \operatorname{ord}_P(f) \cdot (P)$$

where $\operatorname{ord}_P(f)$ is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Fact: Any E elliptic curve is isomorphic to a quotient of $\mathrm{Div}^0(E)$:

$$\begin{array}{ccc} E & \stackrel{\sim}{\longrightarrow} & \operatorname{Pic}^0(E) & = \operatorname{Div}^0(E)/\{\operatorname{principal divisors}\} \\ P & \longmapsto & [(P)-(0_E)] \end{array}$$

$$[D] = [D']$$

$$\iff$$

$$D - D' = \operatorname{div} f$$

Working example: the Tate-Lichtenbaum pairing.

Fix degree $\ell \in \mathbb{Z}$, a base field $k = \mathbb{F}_q$ containing ℓ -th roots of unity μ_{ℓ} .

Working example: the Tate-Lichtenbaum pairing.

Fix degree $\ell \in \mathbb{Z}$, a base field $k = \mathbb{F}_q$ containing ℓ -th roots of unity μ_ℓ .

where $f_{\ell,P} \in k(E)$ is a Miller function attached to P, i.e. satisfies

$$\operatorname{div} f_{\ell,P} = (\ell - 1) (0_E) + ([\ell]P) - \ell (-P) \in \operatorname{Div}^0(E)$$

Working example: the Tate-Lichtenbaum pairing.

Fix degree $\ell \in \mathbb{Z}$, a base field $k = \mathbb{F}_q$ containing ℓ -th roots of unity μ_{ℓ} .

where $f_{\ell,P} \in k(E)$ is a Miller function attached to P, i.e. satisfies

$$\operatorname{div} f_{\ell,P} = (\ell - 1)(0_E) + ([\ell]P) - \ell(-P) \in \operatorname{Div}^0(E)$$

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Working example: the Tate-Lichtenbaum pairing.

Fix degree $\ell \in \mathbb{Z}$, a base field $k = \mathbb{F}_q$ containing ℓ -th roots of unity μ_{ℓ} .

where $f_{\ell,P} \in k(E)$ is a Miller function attached to P, i.e. satisfies

$$\operatorname{div} f_{\ell,P} = (\ell - 1)(0_E) + ([\ell]P) - \ell(-P) \in \operatorname{Div}^0(E)$$

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on $E \rightsquigarrow$ addition law for Miller fns $f_{i,P}$:

$$f_{i+j,P} = f_{i,P} \cdot f_{j,P} \cdot (l_{[i]P,[j]P}/v_{[j]P})$$

with $l_{R,S}=$ line through R and S, and $v_S=$ vertical line through S.

Working example: the Tate-Lichtenbaum pairing.

Fix degree $\ell \in \mathbb{Z}$, a base field $k = \mathbb{F}_q$ containing ℓ -th roots of unity μ_ℓ .

where $f_{\ell,P} \in k(E)$ is a Miller function attached to P, i.e. satisfies

$$\operatorname{div} f_{\ell,P} = (\ell - 1) (0_E) + ([\ell]P) - \ell (-P) \in \operatorname{Div}^0(E)$$

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on $E \rightsquigarrow$ addition law for Miller fns $f_{i,P}$:

$$f_{i+j,P} = f_{i,P} \cdot f_{j,P} \cdot (l_{[i]P,[j]P}/v_{[j]P})$$

with $l_{R,S}=$ line through R and S, and $v_S=$ vertical line through S.

Miller's algorithm: compute $f_{\ell,P}(Q)$ by:

- Fix an addition chain: compute (P, [2]P,
- Alongside, compute $(f_{1,P}(Q), f_{2,P}(Q),$

Working example: the Tate-Lichtenbaum pairing.

Fix degree $\ell \in \mathbb{Z}$, a base field $k = \mathbb{F}_q$ containing ℓ -th roots of unity μ_ℓ .

where $f_{\ell,P} \in k(E)$ is a Miller function attached to P, i.e. satisfies

$$\operatorname{div} f_{\ell,P} = (\ell - 1) (0_E) + ([\ell]P) - \ell (-P) \in \operatorname{Div}^0(E)$$

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on $E \rightsquigarrow$ addition law for Miller fns $f_{i,P}$:

$$f_{i+j,P} = f_{i,P} \cdot f_{j,P} \cdot (l_{[i]P,[j]P}/v_{[j]P})$$

with $l_{R,S}=$ line through R and S, and $v_S=$ vertical line through S.

Miller's algorithm: compute $f_{\ell,P}(Q)$ by:

- Fix an addition chain: compute $(P, [2]P, \ldots, [i]P,$
- Alongside, compute $(f_{1,P}(Q), f_{2,P}(Q), \ldots, f_{i,P}(Q),$

Working example: the Tate-Lichtenbaum pairing.

Fix degree $\ell \in \mathbb{Z}$, a base field $k = \mathbb{F}_q$ containing ℓ -th roots of unity μ_ℓ .

where $f_{\ell,P} \in k(E)$ is a Miller function attached to P, i.e. satisfies

$$\operatorname{div} f_{\ell,P} = (\ell - 1)(0_E) + ([\ell]P) - \ell(-P) \in \operatorname{Div}^0(E)$$

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on $E \rightsquigarrow$ addition law for Miller fns $f_{i,P}$:

$$f_{i+j,P} = f_{i,P} \cdot f_{j,P} \cdot (l_{[i]P,[j]P}/v_{[j]P})$$

with $l_{R,S} = \text{line through } R \text{ and } S$, and $v_S = \text{vertical line through } S$.

Miller's algorithm: compute $f_{\ell,P}(Q)$ by:

- Fix an addition chain: compute $(P, [2]P, \ldots, [i]P, \ldots, [\ell]P)$
- Alongside, compute $(f_{1,P}(Q), f_{2,P}(Q), \ldots, f_{i,P}(Q), \ldots, f_{\ell,P}(Q))$.

To compute line functions $l_{R,S}$, v_R for Miller's algorithm, we represent points on E as $P=(X_P:Y_P:Z_P)$. Algebraic group law \leadsto tells how to add points P+Q.

To compute line functions $l_{R,S}$, v_R for Miller's algorithm, we represent points on E as $P=(X_P:Y_P:Z_P)$. Algebraic group law \leadsto tells how to add points P+Q.

$$Y_P = \pm \sqrt{g(X_P,Z_P)} \quad \leadsto \quad ext{without Y, sign ambiguity:} \ (X_P:Z_P) ext{ represents } \pm P$$

To compute line functions $l_{R,S}$, v_R for Miller's algorithm, we represent points on E as $P=(X_P:Y_P:Z_P)$. Algebraic group law \leadsto tells how to add points P+Q.

$$Y_P = \pm \sqrt{g(X_P,Z_P)} \quad \leadsto \quad ext{without Y, sign ambiguity:} \ (X_P:Z_P) \text{ represents } \pm P$$

Not a group anymore! But there's a pseudo-addition on E/\pm :

$$xDBL: \pm P \mapsto \pm [2]P,$$

$$XADD: (\pm P, \pm Q; \pm (P - Q)) \mapsto \pm (P + Q)$$

To compute line functions $l_{R,S}$, v_R for Miller's algorithm, we represent points on E as $P = (X_P : Y_P : Z_P)$. Algebraic group law \rightsquigarrow tells how to add points P+Q.

$$Y_P = \pm \sqrt{g(X_P,Z_P)} \quad \leadsto \quad \text{without Y, sign ambiguity:} \\ (X_P:Z_P) \text{ represents } \, \pm P$$

Not a group anymore! But there's a pseudo-addition on E/\pm :

$$\text{xDBL}\colon \pm P \mapsto \pm [2]P$$

$$\text{xDBL}\colon \pm P \mapsto \pm [2]P,$$
 $\text{xADD}\colon (\pm P, \pm Q; \pm (P-Q)) \mapsto \pm (P+Q)$

...and it's quite fast to perform. 3 mult, 2 squarings on Montgomery models $By^2 = x^3 + Ax^2 + x$.

$$\text{xDBL:} \begin{cases} Q = (X_P + Z_P)^2 \\ R = (X_P - Z_P)^2 \\ S = Q - R \\ [2]P = (QR : S(R + \frac{a+2}{4}S)) \end{cases} \qquad \text{xADD:} \begin{cases} U = (X_P - Z_P)(X_Q + Z_Q) \\ V = (X_P + Z_P)(X_Q - Z_Q) \\ X_{P+Q} = Z_{P-Q} \cdot (U+V)^2 \\ Z_{P+Q} = X_{P-Q} \cdot (U-V)^2 \end{cases}$$

Goal: compute scalar multiplication $P\mapsto [\ell]P$ $\pm [\ell]P=[\ell](\pm P) \leadsto$ use x-only arithmetic!

Goal: compute scalar multiplication $P\mapsto [\ell]P$ $\begin{tabular}{l} \not \& \end{tabular} \pm [\ell]P = [\ell](\pm P) \leadsto \mbox{use x-only arithmetic!} \end{tabular}$

We have operations on E/\pm :

$$xDBL: P \mapsto [2]P$$

$$XADD: (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$$

Goal: compute scalar multiplication
$$P\mapsto [\ell]P$$
 $\pm [\ell]P = [\ell](\pm P) \leadsto$ use x -only arithmetic!

We have operations on E/\pm :

$$\text{xDBL} \colon P \mapsto [2]P$$

$$XADD: (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$$

LADDER:
$$(\ell, P) \mapsto ([\ell]P, [\ell+1]P)$$
.

$$[\ell]P \qquad [\ell+1]P$$
...

$$[2n]P [2n+1]P$$

$$[n]P$$
 $[n+1]P$ \dots P $2P$ 0_E P

Goal: compute scalar multiplication $P \mapsto [\ell]P$ $\pm [\ell]P = [\ell](\pm P) \rightsquigarrow \text{ use } x\text{-only arithmetic!}$

We have operations on E/\pm :

$$xDBL: P \mapsto [2]P$$

$$XADD: (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$$

Combine xDBL, xADD to form a

LADDER:
$$(\ell, P) \mapsto ([\ell]P, [\ell+1]P)$$
.

 0_E

Goal: compute scalar multiplication $P\mapsto [\ell]P$

$$\pm [\ell]P = [\ell](\pm P) \rightsquigarrow \text{use } x\text{-only arithmetic!}$$

We have operations on E/\pm :

$$xDBL: P \mapsto [2]P$$

$$XADD: (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$$

LADDER:
$$(\ell, P) \mapsto ([\ell]P, [\ell+1]P)$$
.

$$0_E$$
 P

Goal: compute scalar multiplication $P\mapsto [\ell]P$ $\begin{tabular}{l} \not \& & \pm[\ell]P = [\ell](\pm P) \leadsto \mbox{use x-only arithmetic!} \end{tabular}$

We have operations on E/\pm :

$$xDBL: P \mapsto [2]P$$

$$XADD: (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$$

LADDER:
$$(\ell, P) \mapsto ([\ell]P, [\ell+1]P)$$
.

We have operations on E/\pm :

$$xDBL: P \mapsto [2]P$$

$$XADD: (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$$

LADDER:
$$(\ell, P) \mapsto ([\ell]P, [\ell+1]P)$$
.

Goal: compute scalar multiplication
$$P\mapsto [\ell]P$$
 $\pm [\ell]P=[\ell](\pm P) \leadsto$ use $x\text{-only arithmetic!}$

We have operations on E/\pm :

$$xDBL: P \mapsto [2]P$$

$$XADD: (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$$

LADDER:
$$(\ell, P) \mapsto ([\ell]P, [\ell+1]P)$$
.

$$[\ell]P$$
 $[\ell+1]P$ \cdots $[2n]P$ $[2n+1]P$ $[n]P$ $[n]P$ $[n+1]P$ \cdots P $2P$ 0_E P

Goal: compute scalar multiplication
$$P\mapsto [\ell]P$$
 $\begin{tabular}{l} \not \& & \pm[\ell]P = [\ell](\pm P) \leadsto \mbox{use x-only arithmetic!} \end{tabular}$

We have operations on E/\pm :

$$\text{xDBL} \colon P \mapsto [2]P$$

 $\text{xADD} \colon (P_1, P_2; P_1 - P_2) \mapsto P_1 + P_2$

Combine xDBL, xADD to form a

LADDER:
$$(\ell, P) \mapsto ([\ell]P, [\ell+1]P)$$
.

Generalization useful later:³ consider 3PtLadder with offset Q. Needs extra input $\pm (P-Q)$.

6 / 17

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025

³De Feo, Jao, Plût, *Towards quantum-secure cryptosystems with isogenies*, eprint.iacr.org/2011/506

Walking on the helix:

loop on the projection below ←→ up/down one floor!

Walking on the helix: loop on the projection below \longleftrightarrow up/down one floor!

On E: we compute $[0]P=0_E,\ [1]P,\ [2]P,\ \dots,\ [\ell]P=0_E$ …back to the start recall: $E\stackrel{\sim}{\to} {\rm Pic}^0(E)={\rm Div}^0(E)/{\rm Princ}(E)$

On $\operatorname{Pic}^0(E)$, torsion relation $[\ell]P=0 \iff \left[\ell(0_E)-\ell(-P)\right]=0.$

Walking on the helix: loop on the projection below \longleftrightarrow up/down one floor!

- On E: we compute $[0]P = 0_E$, [1]P, [2]P, ..., $[\ell]P = 0_E$...back to the start recall: $E \xrightarrow{\sim} \operatorname{Pic}^0(E) = \operatorname{Div}^0(E)/\operatorname{Princ}(E)$ On $\operatorname{Pic}^0(E)$, torsion relation $[\ell]P = 0 \implies [\ell(0_E) - \ell(-P)] = 0$.
- \blacktriangle Now look above: instead of its quotient, look at $\mathrm{Div}^0(E)$.

$$D = \ell(0_E) - \ell(-P) = \operatorname{div} f_{\ell,P} \neq 0 \quad \in \operatorname{Div}^0(E).$$

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Walking on the helix: loop on the projection below \longleftrightarrow up/down one floor!

- lacksquare On E: we compute $[0]P=0_E$, [1]P, [2]P, ..., $[\ell]P=0_E$...back to the start recall: $E \xrightarrow{\sim} \operatorname{Pic}^0(E) = \operatorname{Div}^0(E)/\operatorname{Princ}(E)$ On $\operatorname{Pic}^0(E)$, torsion relation $[\ell]P = 0 \iff [\ell(0_E) - \ell(-P)] = 0$.
- igwedge Now look above: instead of its quotient, look at $\mathrm{Div}^0(E)$.

$$D = \ell(0_E) - \ell(-P) = \operatorname{div} f_{\ell,P} \neq 0 \quad \in \operatorname{Div}^0(E).$$

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller's algorithm: while adding points $0_E, P, [2]P, \dots, [\ell]P = 0_E$ we accumulate divisor info: $f_{0,P}(Q), \ldots, f_{\ell,P}(Q) = \prod_{i} l_{[i_i]P,[i'_i]P}(Q) / v_{[i_i]P}(Q) = e(P,Q)$.

7 / 17

Core idea: monodromy

Walking on the helix: loop on the projection below \longleftrightarrow up/down one floor!

- On E: we compute $[0]P = 0_E$, [1]P, [2]P, ..., $[\ell]P = 0_E$...back to the start recall: $E \xrightarrow{\sim} \operatorname{Pic}^0(E) = \operatorname{Div}^0(E)/\operatorname{Princ}(E)$ On $\operatorname{Pic}^0(E)$, torsion relation $[\ell]P = 0 \implies [\ell(0_E) - \ell(-P)] = 0$.
- lacktriangle Now look above: instead of its quotient, look at $\mathrm{Div}^0(E)$.

$$D = \ell(0_E) - \ell(-P) = \operatorname{div} f_{\ell,P} \neq 0 \quad \in \operatorname{Div}^0(E).$$

Even if [D] = [0], the representative D carries nontrivial information: pairings!

- Monodromy in Miller's algorithm: while adding points $0_E, P, [2]P, \ldots, [\ell]P = 0_E$, we accumulate divisor info: $f_{0,P}(Q), \ldots, f_{\ell,P}(Q) = \prod_j l_{[i_j]P,[i'_j]P}(Q)/v_{[i_j]P}(Q) = e(P,Q)$.
- Monodromy already appears in the Montgomery ladder alone:
 - Start with $0_E = (1:0)$ and $P = (X_P:Z_P)$
 - Perform LADDER (P,ℓ) : get $[\ell]P = (X_{\ell P}:0) = (1:0)$ $\rightsquigarrow X_{\ell P}$ is a monodromy factor.

Core idea: monodromy

Walking on the helix: loop on the projection below \longleftrightarrow up/down one floor!

- On E: we compute $[0]P = 0_E$, [1]P, [2]P, ..., $[\ell]P = 0_E$...back to the start recall: $E \xrightarrow{\sim} \operatorname{Pic}^0(E) = \operatorname{Div}^0(E)/\operatorname{Princ}(E)$ On $\operatorname{Pic}^0(E)$, torsion relation $[\ell]P = 0 \iff [\ell(0_E) - \ell(-P)] = 0$.
- lacktriangle Now look above: instead of its quotient, look at $\mathrm{Div}^0(E)$.

$$D = \ell(0_E) - \ell(-P) = \operatorname{div} f_{\ell,P} \neq 0 \quad \in \operatorname{Div}^0(E).$$

Even if [D] = [0], the representative D carries nontrivial information: pairings!

- Monodromy in Miller's algorithm: while adding points $0_E, P, [2]P, \ldots, [\ell]P = 0_E$, we accumulate divisor info: $f_{0,P}(Q), \ldots, f_{\ell,P}(Q) = \prod_j l_{[i_j]P,[i'_j]P}(Q)/v_{[i_j]P}(Q) = e(P,Q)$.
- Monodromy already appears in the Montgomery ladder alone:
 - Start with $0_E = (1:0)$ and $P = (X_P:Z_P)$
 - Perform Ladder (P,ℓ) : get $[\ell]P = (X_{\ell P}:0) = (1:0)$ $\leadsto X_{\ell P}$ is a monodromy factor. PROJECTIVE COORDINATES CARRY MEANING!

$$P = (x_P : 1) \in E[\ell], \quad Q = (x_Q : 1), \quad P - Q = (x_{P-Q} : 1)$$

$$P = (x_P : 1) \in E[\ell], \quad Q = (x_Q : 1), \quad P - Q = (x_{P-Q} : 1)$$

We look at the 3PTLADDER where P,Q interact. Observe monodromy factors:

$$0_E = (1,0) \qquad \xrightarrow{3 \text{PTLADDER}(\ell,P,Q;P-Q)} \qquad [\ell]P = (X_{\ell P},0) \qquad \qquad \text{differ by } \lambda_P = X_{\ell P}$$

$$P = (x_P : 1) \in E[\ell], \quad Q = (x_Q : 1), \quad P - Q = (x_{P-Q} : 1)$$

We look at the 3PTLADDER where P,Q interact. Observe monodromy factors:

$$\begin{array}{ll} 0_E = (1,0) & \xrightarrow{3\mathrm{PTLADDER}(\ell,P,Q;P-Q)} & [\ell]P = (X_{\ell P},0) & \text{differ by } \lambda_P = X_{\ell P} \\ Q = (x_Q,1) & & [\ell]P + Q = (X_{\ell P+Q},Z_{\ell P+Q}) & \text{differ by } \lambda_Q = Z_{\ell P+Q} \end{array}$$

$$P = (x_P : 1) \in E[\ell], \quad Q = (x_Q : 1), \quad P - Q = (x_{P-Q} : 1)$$

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

$$\begin{array}{ccc} 0_E = (1,0) & \xrightarrow{3\mathrm{PTLADDER}(\ell,P,Q;P-Q)} & [\ell]P = (X_{\ell P},0) & \text{differ by } \lambda_P = X_{\ell P} \\ Q = (x_Q,1) & & [\ell]P + Q = (X_{\ell P+Q},Z_{\ell P+Q}) & \text{differ by } \lambda_Q = Z_{\ell P+Q} \end{array}$$

From this we get the Tate pairing!

$$\lambda_Q/\lambda_P = e_{T,\ell}(P,Q)$$

$$P = (x_P : 1) \in E[\ell], \quad Q = (x_Q : 1), \quad P - Q = (x_{P-Q} : 1)$$

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

$$\begin{array}{ccc} 0_E = (1,0) & \xrightarrow{3\mathrm{PTLADDER}(\ell,P,Q;P-Q)} & [\ell]P = (X_{\ell P},0) & \text{differ by } \lambda_P = X_{\ell P} \\ Q = (x_Q,1) & & [\ell]P + Q = (X_{\ell P+Q},Z_{\ell P+Q}) & \text{differ by } \lambda_Q = Z_{\ell P+Q} \end{array}$$

From this we get the Tate pairing! squared, + garbage

$$\lambda_Q/\lambda_P = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$$

$$P = (x_P : 1) \in E[\ell], \quad Q = (x_Q : 1), \quad P - Q = (x_{P-Q} : 1)$$

We look at the $\operatorname{3PtLadder}$ where P,Q interact. Observe monodromy factors:

$$\begin{array}{ccc} 0_E = (1,0) & & & & \\ Q = (x_Q,1) & & & & \\ \end{array} \xrightarrow{3\mathrm{PTLADDER}(\ell,P,Q;P-Q)} & & [\ell]P = (X_{\ell P},0) & & \text{differ by } \lambda_P = X_{\ell P} \\ & [\ell]P + Q = (X_{\ell P+Q},Z_{\ell P+Q}) & & \text{differ by } \lambda_Q = Z_{\ell P+Q} \end{array}$$

From this we get the Tate pairing! squared, + garbage

$$\lambda_Q/\lambda_P = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$$
 More precisely, $\text{STUFF} = \frac{(4x_P)^{\ell \cdot (\neg \ell + 1)}}{(4x_P)^{\ell \cdot \neg \ell} (4x_Q)^{\ell} (4x_{P-Q})^{\neg \ell}}$ depends on⁴

- initial input coordinates
- bit representation of ℓ .

⁴notation: $\neg \ell =$ bitwise negation of the bit representation of ℓ

$$P = (x_P : 1) \in E[\ell], \quad Q = (x_Q : 1), \quad P - Q = (x_{P-Q} : 1)$$

We look at the 3PTLADDER where P,Q interact. Observe monodromy factors:

$$\begin{array}{ccc} 0_E = (1,0) & & & & \\ Q = (x_Q,1) & & & & \\ \end{array} \xrightarrow{3\mathrm{PTLADDER}(\ell,P,Q;P-Q)} & & [\ell]P = (X_{\ell P},0) & & \text{differ by } \lambda_P = X_{\ell P} \\ & [\ell]P + Q = (X_{\ell P+Q},Z_{\ell P+Q}) & & \text{differ by } \lambda_Q = Z_{\ell P+Q} \end{array}$$

From this we get the Tate pairing! squared, + garbage

$$\lambda_Q/\lambda_P = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$$
 More precisely, $\text{STUFF} = \frac{(4x_P)^{\ell \cdot (\neg \ell + 1)}}{(4x_P)^{\ell \cdot \neg \ell} (4x_Q)^{\ell} (4x_{P-Q})^{\neg \ell}}$ depends on⁴

- initial input coordinates
- bit representation of ℓ .

Solution: compute STUFF and divide it out...

or better: edit the LADDER to get rid of STUFF.

⁴notation: $\neg \ell =$ bitwise negation of the bit representation of ℓ

Remember $XADD(P, Q; P - Q) = (X_{P+Q}, Z_{P+Q}).$

Remember $\operatorname{XADD}(P,Q;P-Q) = (X_{P+Q},Z_{P+Q}).$ Modify into CADD : different projective scaling of the output (X_{P+Q},Z_{P+Q}) $U,V=\ldots$ $X_{P+Q}=Z_{P-Q}\left(U+V\right)^2,$ $Z_{P+Q}=X_{P-Q}\left(U-V\right)^2.$

Remember $\operatorname{XADD}(P,Q;P-Q) = (X_{P+Q},Z_{P+Q}).$ Modify into CADD : different projective scaling of the output (X_{P+Q},Z_{P+Q}) $U,V=\ldots$ $X_{P+Q}=2\cdot Z_{P-Q}\,(U+V)^2\,,$ $Z_{P+Q}=2\cdot X_{P-Q}\,(U-V)^2\,.$

Remember $\operatorname{XADD}(P,Q;P-Q) = (X_{P+Q},Z_{P+Q}).$ Modify into $\operatorname{CADD}:$ different projective scaling of the output (X_{P+Q},Z_{P+Q}) $U,V = \ldots$ $X_{P+Q} = 3 \cdot Z_{P-Q} \left(U+V\right)^2,$ $Z_{P+Q} = 3 \cdot X_{P-Q} \left(U-V\right)^2.$

Remember $\operatorname{XADD}(P,Q;P-Q) = (X_{P+Q},Z_{P+Q}).$ Modify into CADD : different projective scaling of the output (X_{P+Q},Z_{P+Q}) $U,V=\ldots X_{P+Q}=\lambda\cdot Z_{P-Q}\,(U+V)^2\,,$ $Z_{P+Q}=\lambda\cdot X_{P-Q}\,(U-V)^2\,.$

Remember $XADD(P,Q;P-Q) = (X_{P+Q},Z_{P+Q}).$

Modify into CADD: different projective scaling of the output (X_{P+Q}, Z_{P+Q})

$$U, V = \dots$$
 $U, V = \dots$ $X_{P+Q} = Z_{P-Q} (U+V)^2, \Rightarrow X_{P+Q} = (4X_{P-Q})^{-1} \cdot (U+V)^2,$ $Z_{P+Q} = X_{P-Q} (U-V)^2.$ $Z_{P+Q} = (4Z_{P-Q})^{-1} \cdot (U-V)^2.$

We call this cubical differential addition.

Remember $XADD(P, Q; P - Q) = (X_{P+Q}, Z_{P+Q}).$

Modify into CADD: different projective scaling of the output (X_{P+Q}, Z_{P+Q})

$$U, V = \dots$$
 $U, V = \dots$ $X_{P+Q} = Z_{P-Q}(U+V)^2, \Rightarrow X_{P+Q} = (4X_{P-Q})^{-1} \cdot (U+V)^2,$
 $Z_{P+Q} = X_{P-Q}(U-V)^2.$ $Z_{P+Q} = (4Z_{P-Q})^{-1} \cdot (U-V)^2.$

We call this cubical differential addition.

Set CDBL = XDBL and replace CADD into the ladder.

Then $\operatorname{CLadder}(\ell, P, Q; P - Q) \mapsto (\ell P, \ell P + Q)$ in (X, Z)-coordinates:

$$\lambda_Q'/\lambda_P' = Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$$
 without extra STUFF!

Remember
$$XADD(P, Q; P - Q) = (X_{P+Q}, Z_{P+Q}).$$

Modify into CADD: different projective scaling of the output (X_{P+Q}, Z_{P+Q})

$$U, V = \dots$$
 $U, V = \dots$
 $X_{P+Q} = Z_{P-Q}(U+V)^2, \quad \rightsquigarrow \quad X_{P+Q} = (4X_{P-Q})^{-1} \cdot (U+V)^2,$
 $Z_{P+Q} = X_{P-Q}(U-V)^2. \quad Z_{P+Q} = (4Z_{P-Q})^{-1} \cdot (U-V)^2.$

We call this cubical differential addition.

Set CDBL = XDBL and replace CADD into the ladder.

Then $\operatorname{CLADDER}(\ell, P, Q; P - Q) \mapsto (\ell P, \ell P + Q)$ in (X, Z)-coordinates:

$$\lambda_Q'/\lambda_P' = Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$$
 without extra STUFF!

- ullet We recover $e_{T,\ell}$ exactly when ℓ is odd \checkmark $\qquad \ell$ even \longrightarrow small trick to avoid the square
- Just minor tweak needed in the conversion $xADD \longrightarrow cADD$ \longrightarrow easy optimized, constant-time implementation.⁵
- Inverses can be pre-computed and batched: only one inversion per pairing

⁵Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings

9 / 17

Just seen: from one Montgomery 3-point ladder with edited $\operatorname{CADD} \leadsto \operatorname{Non-reduced}$ Tate pairing $e_{T,\ell}(P,Q) = f_{\ell,P}(Q)$ from projective coordinates $(X_{\ell P}, Z_{\ell P+Q})$.

Just seen: from one Montgomery 3-point ladder with edited CADD \leadsto Non-reduced Tate pairing $e_{T,\ell}(P,Q) = f_{\ell,P}(Q)$ from projective coordinates $(X_{\ell P}, Z_{\ell P+Q})$.

What about other pairings? Also recoverable from ladders & some ratios!

Just seen: from one Montgomery 3-point ladder with edited $\operatorname{CADD} \leadsto \operatorname{Non-reduced}$ Tate pairing $e_{T,\ell}(P,Q) = f_{\ell,P}(Q)$ from projective coordinates $(X_{\ell P}, Z_{\ell P+Q})$.

What about other pairings? Also recoverable from ladders & some ratios!

Weil pairing

$$e_{W,\ell} \colon E[\ell] \times E[\ell] \to \mu_{\ell} \qquad (P,Q) \mapsto f_{\ell,P}(Q)/f_{\ell,Q}(P)$$

This requires $2 \cdot \text{non-reduced Tate pairings} \approx 2 \cdot \text{CLADDER}$.

Just seen: from one Montgomery 3-point ladder with edited $\operatorname{CADD} \leadsto \operatorname{Non-reduced}$ Tate pairing $e_{T,\ell}(P,Q) = f_{\ell,P}(Q)$ from projective coordinates $(X_{\ell P}, Z_{\ell P+Q})$.

What about other pairings? Also recoverable from ladders & some ratios!

Weil pairing

$$e_{W,\ell} \colon E[\ell] \times E[\ell] \to \mu_{\ell} \qquad (P,Q) \mapsto f_{\ell,P}(Q)/f_{\ell,Q}(P)$$

This requires $2 \cdot \text{non-reduced Tate pairings} \approx 2 \cdot \text{CLADDER}$.

ate pairing

$$e_{A,\ell} \colon \mathbb{G}_2 \times \mathbb{G}_1 \to \mu_{\ell} \qquad (P,Q) \mapsto f_{\lambda,P}(Q)^{\frac{q^k-1}{\ell}}$$

with
$$\lambda \equiv q \pmod{\ell}$$
, $\mathbb{G}_1 = E[\ell](\mathbb{F}_q^k)$, and $\mathbb{G}_2 = E[\ell] \cap \ker(\pi_q - [q])$.

Here, monodromy between one (shorter) <code>CLADDER</code> and Frobenius π_q :

Projectively, CLADDER $(\lambda, P, Q; P - Q) = [q]P + Q = \pi_q(P + Q)$.

Algebra alert:

Some (high-level) theory behind the result

0

We saw earlier:

- ladder with usual XADD $\mapsto (X_{P+Q}, Z_{P+Q}) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$
- ladder with $CADD \mapsto (X_{P+Q}/\mu, Z_{P+Q}/\mu) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$

There's a preferred projective scaling in the output of XADD. Not a coincidence!

We saw earlier:

- ladder with usual XADD $\mapsto (X_{P+Q}, Z_{P+Q}) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$
- ladder with cADD $\mapsto (X_{P+Q}/\mu, Z_{P+Q}/\mu) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$

There's a preferred projective scaling in the output of XADD. Not a coincidence!

Algebraic statement: if $\Gamma(\mathcal{L}) = \langle X, Z \rangle$, there's a canonical isomorphism of line bundles

$$t_{P_1}^*\mathcal{L}\otimes t_{P_2}^*\mathcal{L}\otimes t_{P_3}^*\mathcal{L}\otimes t_{P_1+P_2+P_3}^*\mathcal{L}\cong t_{P_2+P_3}^*\mathcal{L}\otimes t_{P_1+P_3}^*\mathcal{L}\otimes t_{P_1+P_2}^*\mathcal{L}\otimes \mathcal{L}$$

We saw earlier:

- ladder with usual XADD $\mapsto (X_{P+Q}, Z_{P+Q}) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$
- ladder with cADD $\mapsto (X_{P+Q}/\mu, Z_{P+Q}/\mu) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$

There's a preferred projective scaling in the output of XADD. Not a coincidence!

Algebraic statement: if $\Gamma(\mathcal{L}) = \langle X, Z \rangle$, there's a canonical isomorphism of line bundles

$$t_{P_1}^*\mathcal{L}\otimes t_{P_2}^*\mathcal{L}\otimes t_{P_3}^*\mathcal{L}\otimes t_{P_1+P_2+P_3}^*\mathcal{L}\cong t_{P_2+P_3}^*\mathcal{L}\otimes t_{P_1+P_3}^*\mathcal{L}\otimes t_{P_1+P_2}^*\mathcal{L}\otimes \mathcal{L}$$

We saw earlier:

- ladder with usual XADD $\mapsto (X_{P+Q}, Z_{P+Q}) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$
- ladder with $CADD \mapsto (X_{P+Q}/\mu, Z_{P+Q}/\mu) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$

There's a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if $\Gamma(\mathcal{L}) = \langle X, Z \rangle$, there's a canonical isomorphism of line bundles

$$t_{P_1}^*\mathcal{L}\otimes t_{P_2}^*\mathcal{L}\otimes t_{P_3}^*\mathcal{L}\otimes t_{P_1+P_2+P_3}^*\mathcal{L}\cong t_{P_2+P_3}^*\mathcal{L}\otimes t_{P_1+P_3}^*\mathcal{L}\otimes t_{P_1+P_2}^*\mathcal{L}\otimes \mathcal{L}$$

Read as follows: $t_P^*\mathcal{L}\longleftrightarrow \text{scaling }\lambda$ of coordinates X_P,Z_P

We saw earlier:

- ladder with usual XADD $\mapsto (X_{P+Q}, Z_{P+Q}) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$
- ladder with cADD $\mapsto (X_{P+Q}/\mu, Z_{P+Q}/\mu) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$

There's a preferred projective scaling in the output of XADD. Not a coincidence!

Algebraic statement: if $\Gamma(\mathcal{L}) = \langle X, Z \rangle$, there's a canonical isomorphism of line bundles

$$t_{P_1}^*\mathcal{L}\otimes t_{P_2}^*\mathcal{L}\otimes t_{P_3}^*\mathcal{L}\otimes t_{P_1+P_2+P_3}^*\mathcal{L}\cong t_{P_2+P_3}^*\mathcal{L}\otimes t_{P_1+P_3}^*\mathcal{L}\otimes t_{P_1+P_2}^*\mathcal{L}\otimes \mathcal{L}$$

Read as follows: $t_P^*\mathcal{L}\longleftrightarrow$ scaling λ of coordinates X_P,Z_P

Fix scaling of 7 vertices,

isomorphism above \Longrightarrow canonical choice for the 8th

We saw earlier:

- ladder with usual XADD $\mapsto (X_{P+Q}, Z_{P+Q}) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2 \cdot \text{STUFF}$
- ladder with cADD $\mapsto (X_{P+Q}/\mu, Z_{P+Q}/\mu) \longrightarrow Z_{\ell P+Q}/X_{\ell P} = e_{T,\ell}(P,Q)^2$

There's a preferred projective scaling in the output of XADD. Not a coincidence!

Algebraic statement: if $\Gamma(\mathcal{L}) = \langle X, Z \rangle$, there's a canonical isomorphism of line bundles

$$t_{P_1}^*\mathcal{L}\otimes t_{P_2}^*\mathcal{L}\otimes t_{P_3}^*\mathcal{L}\otimes t_{P_1+P_2+P_3}^*\mathcal{L}\cong t_{P_2+P_3}^*\mathcal{L}\otimes t_{P_1+P_3}^*\mathcal{L}\otimes t_{P_1+P_2}^*\mathcal{L}\otimes \mathcal{L}$$

Read as follows: $t_P^*\mathcal{L} \longleftrightarrow \text{scaling } \lambda \text{ of coordinates } X_P, Z_P$ Fix scaling of 7 vertices,

isomorphism above \Longrightarrow canonical choice for the 8th

Then, CADD and CDBL are special cases: Let $(P_1, P_2, P_3) = (P, Q, -Q)$. The vertices

$$(P, Q, -Q, P, 0, P+Q, P-Q, 0)$$

Fixing P, Q, P - Q we get P + Q uniquely!

Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

$$\operatorname{div} f_{\ell,P} = \ell(0_E) - \ell(-P).$$

Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

$$\operatorname{div} f_{\ell,P} = \ell(0_E) - \ell(-P).$$

Projective coordinates X, Z are objects living in a line bundle \mathcal{L} .

Even though they're not meromorphic functions (like x, y, 1) in k(E), they have a zero locus. For example, $0_E = (1:0)$: $\rightsquigarrow Z$ has a zero at 0_E (...with multiplicity 2)

Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

$$\operatorname{div} f_{\ell,P} = \ell(0_E) - \ell(-P).$$

Projective coordinates X, Z are objects living in a line bundle \mathcal{L} .

Even though they're not meromorphic functions (like x, y, 1) in k(E), they have a zero locus. For example, $0_E = (1:0)$: $\leadsto Z$ has a zero at 0_E (...with multiplicity 2) $\leadsto \exists$ reasonable notion of divisor of zeroes:

$$\operatorname{div}_0(Z) = 2(0_E), \quad \operatorname{div}_0(Z(\cdot + P)) = 2(-P).$$

Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

$$\operatorname{div} f_{\ell,P} = \ell(0_E) - \ell(-P).$$

Projective coordinates X, Z are objects living in a line bundle \mathcal{L} .

Even though they're not meromorphic functions (like x, y, 1) in k(E), they have a zero locus. For example, $0_E = (1:0)$: $\leadsto Z$ has a zero at 0_E (...with multiplicity 2) $\leadsto \exists$ reasonable notion of divisor of zeroes:

$$\operatorname{div}_0(Z) = 2(0_E), \quad \operatorname{div}_0(Z(\cdot + P)) = 2(-P).$$

Idea: compute some ratio
$$g(\cdot) = \frac{Z(\cdot + P_1) \cdots Z(\cdot + P_m)}{Z(\cdot + Q_1) \cdots Z(\cdot + Q_m)}.$$

Generally not well-def: must choose P_i, Q_j carefully, compatible with cubical arithmetic.

Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

$$\operatorname{div} f_{\ell,P} = \ell(0_E) - \ell(-P).$$

Projective coordinates X, Z are objects living in a line bundle \mathcal{L} .

Even though they're not meromorphic functions (like x,y,1) in k(E), they have a zero locus. For example, $0_E=(1:0)$: $\leadsto Z$ has a zero at 0_E (...with multiplicity 2) $\leadsto \exists$ reasonable notion of divisor of zeroes:

$$\operatorname{div}_0(Z) = 2(0_E), \quad \operatorname{div}_0(Z(\cdot + P)) = 2(-P).$$

Idea: compute some ratio
$$g(\cdot) = \frac{Z(\cdot + P_1) \cdots Z(\cdot + P_m)}{Z(\cdot + Q_1) \cdots Z(\cdot + Q_m)}$$
.

Hope:
$$g \in k(E)$$
, $\implies \text{div } g = 2(-P_1) + \dots + 2(-P_m) - 2(-Q_1) - \dots - 2(-Q_m)$

Generally not well-def: must choose P_i, Q_j carefully, compatible with cubical arithmetic.

Miller fns:
$$P \in E[\ell]$$
. Build $g_{\ell,P} : R \mapsto \frac{Z(R + \ell P)Z(R)^{\ell-1}}{Z(P)^{\ell}} \longrightarrow \operatorname{div} g_{\ell,P} = 2 \cdot \left(\ell(0) - \ell(-P)\right)$

End of the theory!

Some applications now

Application: multi-dimensional discrete logarithms

- Consider a torsion basis $\langle P,Q\rangle=E[N]$, with N smooth.
- Let $R \in E[N]$. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Application: multi-dimensional discrete logarithms

- \bullet Consider a torsion basis $\langle P,Q\rangle=E[N]$, with N smooth.
- Let $R \in E[N]$. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing $e_N \colon E[N] \times E[N] \to \mu_N$. [In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

- Alternating: e(P, P) = 1
- Non-degenerate: if P has order N, there is Q s.t. e(P,Q) has order N. \leadsto in part., $\langle P,Q\rangle=E[N]\iff e(P,Q)$ has order N.

Application: multi-dimensional discrete logarithms

- \bullet Consider a torsion basis $\langle P,Q\rangle=E[N]$, with N smooth.
- Let $R \in E[N]$. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing $e_N \colon E[N] \times E[N] \to \mu_N$.

[In isogeny applications, the $(2 \times \text{faster})$ Tate pairing often shares the same properties:]

- Alternating: e(P, P) = 1
- Non-degenerate: if P has order N, there is Q s.t. e(P,Q) has order N. \leadsto in part., $\langle P,Q\rangle=E[N]\iff e(P,Q)$ has order N.

Some details:

$$\begin{split} &\zeta=e_N(P,Q) & \text{has order } N \\ &h_b=e_N(R,P)=e_N([a]P+[b]Q,P)=\zeta^{-b} \\ &h_a=e_N(R,Q)=e_N([{\color{red}a}]P+[b]Q,Q)=\zeta^{{\color{red}a}} \end{split}$$

Application: multi-dimensional discrete logarithms

- \bullet Consider a torsion basis $\langle P,Q\rangle=E[N]$, with N smooth.
- Let $R \in E[N]$. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing $e_N \colon E[N] \times E[N] \to \mu_N$.

[In isogeny applications, the $(2 \times \text{faster})$ Tate pairing often shares the same properties:]

- Alternating: e(P, P) = 1
- Non-degenerate: if P has order N, there is Q s.t. e(P,Q) has order N. \leadsto in part., $\langle P,Q\rangle=E[N]\iff e(P,Q)$ has order N.

Some details:

$$\begin{split} &\zeta=e_N(P,Q) & \text{has order } N \\ &h_b=e_N(R,P)=e_N([a]P+[b]Q,P)=\zeta^{-b} \\ &h_a=e_N(R,Q)=e_N([a]P+[b]Q,Q)=\zeta^a \end{split}$$

Application: multi-dimensional discrete logarithms

- Consider a torsion basis $\langle P,Q\rangle=E[N]$, with N smooth.
- Let $R \in E[N]$. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing $e_N \colon E[N] \times E[N] \to \mu_N.$

[In isogeny applications, the $(2 \times \text{faster})$ Tate pairing often shares the same properties:]

- Alternating: e(P, P) = 1

Some details:

$$\zeta = e_N(P,Q) \qquad \text{has order } N \qquad \qquad \text{DLog in } E[N] \\ h_b = e_N(R,P) = e_N([a]P + [b]Q,P) = \zeta^{-b} \\ h_a = e_N(R,Q) = e_N([a]P + [b]Q,Q) = \zeta^a \qquad \qquad \text{DLog in } \mu_N \text{, much easier } n \in \mathbb{R}$$

 \checkmark Speed: \sim 40% cost reduction w.r.t. Miller's algo. Very useful trick in isogeny protocols: e.g., point compression (SIKE \dagger , SQIsign2D): (a,b) is shorter than (X_R,Z_R) .

Weil pairing: $e_{W,N} \colon E[N] \times E[N] \to \mu_N$.

• Non-degenerate $\Longrightarrow e(P,Q)$ has order N iff (P,Q) are a torsion basis.

Weil pairing: $e_{W,N} \colon E[N] \times E[N] \to \mu_N$.

• Non-degenerate $\implies e(P,Q)$ has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite $N = \prod_i \ell_i$, $N \mid \#E(\mathbb{F}_q)$

Weil pairing: $e_{W,N} \colon E[N] \times E[N] \to \mu_N$.

• Non-degenerate $\implies e(P,Q)$ has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite $N = \prod_i \ell_i$, $N \mid \#E(\mathbb{F}_q)$

- ullet Sample random points P,Q
- Do P,Q have order N? Do they form a torsion basis? Test order of $e(P,Q) \in \mu_N$.

Weil pairing: $e_{W,N} \colon E[N] \times E[N] \to \mu_N$.

• Non-degenerate $\implies e(P,Q)$ has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite $N = \prod_i \ell_i$, $N \mid \#E(\mathbb{F}_q)$

- ullet Sample random points P,Q
- Do P,Q have order N? Do they form a torsion basis? Test order of $e(P,Q) \in \mu_N$. [alternative: trial multiplication $P \mapsto [N/\ell_i]P$. Pairing + order testing is much faster \checkmark]

Weil pairing: $e_{W,N} \colon E[N] \times E[N] \to \mu_N$.

• Non-degenerate $\implies e(P,Q)$ has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite $N = \prod_i \ell_i$, $N \mid \#E(\mathbb{F}_q)$

- ullet Sample random points P,Q
- Do P,Q have order N? Do they form a torsion basis? Test order of $e(P,Q) \in \mu_N$. [alternative: trial multiplication $P \mapsto [N/\ell_i]P$. Pairing + order testing is much faster \checkmark]

Application #2: Supersingularity verification

[In CSIDH, the public key must be a supersingular curve $E/\mathbb{F}_p \leadsto \text{public key validation } \checkmark$]

Weil pairing: $e_{WN} : E[N] \times E[N] \rightarrow \mu_N$.

• Non-degenerate \implies e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite $N = \prod_i \ell_i$, $N \mid \#E(\mathbb{F}_q)$

- Sample random points P, Q
- Do P,Q have order N? Do they form a torsion basis? Test order of $e(P,Q) \in \mu_N$. [alternative: trial multiplication $P \mapsto [N/\ell_i]P$. Pairing + order testing is much faster $\sqrt{\ }$]

Application #2: Supersingularity verification

[In CSIDH, the public key must be a supersingular curve $E/\mathbb{F}_p \rightsquigarrow \text{public key validation } \checkmark$]

- Let E/\mathbb{F}_{n^2} be a supersingular curve with $E(\mathbb{F}_{n^2}) \cong (\mathbb{Z}/(p+1)\mathbb{Z})^2$.
- Try to generate a (p+1)-torsion basis (#1). If SUCCESS, return "E is supersingular".

Ladders compute pairings

Weil pairing: $e_{W,N} \colon E[N] \times E[N] \to \mu_N$.

• Non-degenerate $\implies e(P,Q)$ has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite $N = \prod_i \ell_i$, $N \mid \#E(\mathbb{F}_q)$

- ullet Sample random points P,Q
- Do P,Q have order N? Do they form a torsion basis? Test order of $e(P,Q) \in \mu_N$. [alternative: trial multiplication $P \mapsto [N/\ell_i]P$. Pairing + order testing is much faster \checkmark]

Application #2: Supersingularity verification

[In CSIDH, the public key must be a supersingular curve $E/\mathbb{F}_p \leadsto \text{public key validation } \checkmark$]

- Let E/\mathbb{F}_{p^2} be a supersingular curve with $E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/(p+1)\mathbb{Z})^2$.
- Try to generate a (p+1)-torsion basis (#1). If SUCCESS, return "E is supersingular".
- Retry few times. FAIL if we find P with $[p+1]P \neq 0$.
 - → Probability of false negatives: 0. Probability of false positives: negligible.

Weil pairing: $e_{W,N} \colon E[N] \times E[N] \to \mu_N$.

• Non-degenerate $\implies e(P,Q)$ has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite $N = \prod_i \ell_i$, $N \mid \#E(\mathbb{F}_q)$

- ullet Sample random points P,Q
- Do P,Q have order N? Do they form a torsion basis? Test order of $e(P,Q) \in \mu_N$. [alternative: trial multiplication $P \mapsto [N/\ell_i]P$. Pairing + order testing is much faster \checkmark]

Application #2: Supersingularity verification

[In CSIDH, the public key must be a supersingular curve $E/\mathbb{F}_p \leadsto \text{public key validation } \checkmark$]

- Let E/\mathbb{F}_{p^2} be a supersingular curve with $E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/(p+1)\mathbb{Z})^2$.
- Try to generate a (p+1)-torsion basis (#1). If SUCCESS, return "E is supersingular".
- Retry few times. FAIL if we find P with $[p+1]P \neq 0$.
 - → Probability of false negatives: 0. Probability of false positives: negligible.
- ✓ CSIDH uses even embedding degree $k=2 \rightsquigarrow$ only $\sim 7\%$ cost reduction.

Main motivation of cubical pairings: generic pairings *in isogeny-based crypto*. Any benefits of the new approach on pairing-friendly curves?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.

Any benefits of the new approach on pairing-friendly curves?

→ Parallel paper: [LRZZ25]⁶ compares with Miller's algorithm on pairing-friendly curves.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 15/17

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.

Any benefits of the new approach on pairing-friendly curves?

→ Parallel paper: [LRZZ25]⁶ compares with Miller's algorithm on pairing-friendly curves.

[Def/recall embedding degree: say E is an ell curve over \mathbb{F}_q , and $G \subset E[\ell](\mathbb{F}_q)$ has order ℓ . The embedding degree is k if $E[\ell]$ is only defined over \mathbb{F}_{q^k} .

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.

Any benefits of the new approach on pairing-friendly curves?

→ Parallel paper: [LRZZ25]⁶ compares with Miller's algorithm on pairing-friendly curves.

[Def/recall embedding degree: say E is an ell curve over \mathbb{F}_q , and $G \subset E[\ell](\mathbb{F}_q)$ has order ℓ . The embedding degree is k if $E[\ell]$ is only defined over \mathbb{F}_{q^k} .

Speedups in Miller when k is even (denominator elimination) or composite.

- × Both speedups not available in cubical arithmetic.
- \checkmark still, cubical arithmetic gets faster when k>1, i.e., some points lie in subfields $\mathbb{F}_q\subset\mathbb{F}_{q^k}$
- → in some cases, cubical arithmetic can be faster than Miller's algorithm:

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.

Any benefits of the new approach on pairing-friendly curves?

→ Parallel paper: [LRZZ25]⁶ compares with Miller's algorithm on pairing-friendly curves.

[Def/recall embedding degree: say E is an ell curve over \mathbb{F}_q , and $G \subset E[\ell](\mathbb{F}_q)$ has order ℓ . The embedding degree is k if $E[\ell]$ is only defined over \mathbb{F}_{q^k} .

Speedups in Miller when k is even (denominator elimination) or composite.

- × Both speedups not available in cubical arithmetic.
- \checkmark still, cubical arithmetic gets faster when k>1, i.e., some points lie in subfields $\mathbb{F}_q\subset\mathbb{F}_{q^k}$
- → in some cases, cubical arithmetic can be faster than Miller's algorithm:
 - curve families with odd prime embedding degree k (e.g. BW13, k=13)

Main idea of the tricks we saw: replace XADD with some CADD where we change the "affine" scaling λ in of $(\lambda \cdot X_{P+Q}, \lambda \cdot Z_{P+Q})$.

Main idea of the tricks we saw: replace XADD with some CADD where we change the "affine" scaling λ in of $(\lambda \cdot X_{P+Q}, \lambda \cdot Z_{P+Q})$.

And the Montgomery ladder?

Main idea of the tricks we saw: replace xADD with some cADD where we change the "affine" scaling λ in of $(\lambda \cdot X_{P+Q}, \lambda \cdot Z_{P+Q})$.

And the Montgomery ladder?

- Good when constant-time is needed, code size is constrained, fast enough
- ullet Otherwise, not the fastest way to scalar-multiply $\ell \cdot P$

Main idea of the tricks we saw: replace xADD with some cADD where we change the "affine" scaling λ in of $(\lambda \cdot X_{P+Q}, \lambda \cdot Z_{P+Q})$.

And the Montgomery ladder?

- Good when constant-time is needed, code size is constrained, fast enough
- Otherwise, not the fastest way to scalar-multiply $\ell \cdot P$

Questions:

- Can we replace it with faster differential addition chains?
- Or maybe double-and-add chains?
- Miller loops can be sped up by NAFs/windowing/... Can we do it too?

Main idea of the tricks we saw: replace XADD with some CADD where we change the "affine" scaling λ in of $(\lambda \cdot X_{P+Q}, \lambda \cdot Z_{P+Q})$.

And the Montgomery ladder?

- Good when constant-time is needed, code size is constrained, fast enough
- ullet Otherwise, not the fastest way to scalar-multiply $\ell \cdot P$

Questions:

- Can we replace it with faster differential addition chains?
- Or maybe double-and-add chains?
- Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer in most contexts seems to be no :(

Crucial in cubical ladders: the difference points in XADD(P,Q;P-Q) are fixed.

- This happens in Montgomery Ladders, doesn't apply to DACs
- workarounds: use full-coordinate (X, Y, Z) additions \rightsquigarrow expensive.

By modifying projective scaling factors in x-only arithmetic on elliptic curves, Montgomery ladders give pairings as immediate by-products.

- → implementation quirks: simple, easily constant-time, practical.
- → speedups in isogeny-based cryptography.

By modifying projective scaling factors in x-only arithmetic on elliptic curves. Montgomery ladders give pairings as immediate by-products.

- → implementation quirks: simple, easily constant-time, practical.
- → speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

- Other curve models: Theta, Weierstrass, Edwards, . . .
- Higher dimensions: with level-2 theta models. Weil & Tate-Lichtenbaum work similarly ~ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

By modifying projective scaling factors in x-only arithmetic on elliptic curves, Montgomery ladders give pairings as immediate by-products.

- → implementation quirks: simple, easily constant-time, practical.
- → speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

- Other curve models: Theta, Weierstrass, Edwards, ...
- Higher dimensions: with level-2 theta models. Weil & Tate-Lichtenbaum work similarly ~ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

In specific contexts, alternative computations to CLADDER are worth comparing (e.g. DoubleAndAdd, NAFs, ...)

By modifying projective scaling factors in x-only arithmetic on elliptic curves, Montgomery ladders give pairings as immediate by-products.

- → implementation quirks: simple, easily constant-time, practical.
- → speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

- Other curve models: Theta, Weierstrass, Edwards, ...
- Higher dimensions: with level-2 theta models. Weil & Tate-Lichtenbaum work similarly ~ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

In specific contexts, alternative computations to CLADDER are worth comparing (e.g. DoubleAndAdd, NAFs, ...)

Thank you for listening! Questions?

Let E/\mathbb{F}_a be an elliptic curve. A divisor on E is a formal sum

$$D = n_1 \cdot (P_1) + \ldots + n_r \cdot (P_r)$$
 $n_i \in \mathbb{Z}, P_i \in E$

The divisors of degree 0 on E form a group:

$$Div^{0}(E) = \{D = n_{1}(P_{1}) + ... + n_{r}(P_{r}) \mid n_{1} + ... + n_{r} = 0\}.$$

Let E/\mathbb{F}_a be an elliptic curve. A divisor on E is a formal sum

$$D = n_1 \cdot (P_1) + \ldots + n_r \cdot (P_r)$$
 $n_i \in \mathbb{Z}, P_i \in E$

The divisors of degree 0 on E form a group:

$$Div^{0}(E) = \{ D = n_{1}(P_{1}) + \ldots + n_{r}(P_{r}) \mid n_{1} + \ldots + n_{r} = 0 \}.$$

Given a rational function $f \in \overline{\mathbb{F}}_q(E)$, we attach to it a principal divisor

$$\operatorname{div} f = \sum_{P \in E} \operatorname{ord}_P(f) \cdot (P)$$

where $\operatorname{ord}_P(f)$ is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Let E/\mathbb{F}_a be an elliptic curve. A divisor on E is a formal sum

$$D = n_1 \cdot (P_1) + \ldots + n_r \cdot (P_r) \qquad n_i \in \mathbb{Z}, P_i \in E$$

The divisors of degree 0 on E form a group:

$$Div^{0}(E) = \{ D = n_{1}(P_{1}) + \ldots + n_{r}(P_{r}) \mid n_{1} + \ldots + n_{r} = 0 \}.$$

Given a rational function $f \in \overline{\mathbb{F}}_q(E)$, we attach to it a principal divisor

$$\operatorname{div} f = \sum_{P \in E} \operatorname{ord}_{P}(f) \cdot (P)$$

where $\operatorname{ord}_P(f)$ is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of $\mathrm{Div}^0(E)$:

$$\begin{array}{ccc} E & \xrightarrow{\sim} & \operatorname{Pic}^0(E) & = \operatorname{Div}^0(E)/\{\text{principal divisors}\} \\ P & \longmapsto & [(P)-(0_E)] \end{array}$$

(← back to Miller's algo)

Let E/\mathbb{F}_a be an elliptic curve. A divisor on E is a formal sum

$$D = n_1 \cdot (P_1) + \ldots + n_r \cdot (P_r) \qquad n_i \in \mathbb{Z}, P_i \in E$$

The divisors of degree 0 on E form a group:

$$Div^{0}(E) = \{ D = n_{1}(P_{1}) + \ldots + n_{r}(P_{r}) \mid n_{1} + \ldots + n_{r} = 0 \}.$$

Given a rational function $f \in \overline{\mathbb{F}}_q(E)$, we attach to it a principal divisor

$$\operatorname{div} f = \sum_{P \in E} \operatorname{ord}_{P}(f) \cdot (P)$$

where $\operatorname{ord}_P(f)$ is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of $\mathrm{Div}^0(E)$:

$$\begin{array}{ccc} E & \xrightarrow{\sim} & \operatorname{Pic}^0(E) & = \operatorname{Div}^0(E)/\{\text{principal divisors}\} \\ P & \longmapsto & [(P)-(0_E)] \end{array}$$

(← back to Miller's algo)

Consider an even integer $\ell=2m$.

Consider an even integer $\ell = 2m$.

$$P \in E[\ell](k), \quad Q \in E(k), \quad \text{cLadder}(\ell, P, Q, P - Q) \mapsto \ell P, \ \ell P + Q$$

We can get the squared Tate pairing: $\lambda_P/\lambda_Q = X_{\ell P}/Z_{\ell P+Q} = e_{T,\ell}(P,Q)^2$

Consider an even integer $\ell=2m$.

$$P \in E[\ell](k), \quad Q \in E(k), \quad \text{cLadder}(\ell, P, Q, P - Q) \mapsto \ell P, \ \ell P + Q$$

We can get the squared Tate pairing: $\lambda_P/\lambda_Q = X_{\ell P}/Z_{\ell P+Q} = e_{T,\ell}(P,Q)^2$ The pairing has order dividing $\ell = 2m \rightsquigarrow$ the square loses one bit of information.

Consider an even integer $\ell=2m$.

$$P \in E[\ell](k), \quad Q \in E(k), \quad \text{cLadder}(\ell, P, Q, P - Q) \mapsto \ell P, \ \ell P + Q$$

We can get the squared Tate pairing: $\lambda_P/\lambda_Q = X_{\ell P}/Z_{\ell P+Q} = e_{T,\ell}(P,Q)^2$ The pairing has order dividing $\ell = 2m \rightsquigarrow$ the square loses one bit of information.

Step 1: only compute ladder of order
$$m = \ell/2$$
.

$$CLADDER(m, P, Q, P - Q) \mapsto mP, mP + Q$$

Consider an even integer $\ell = 2m$.

$$P \in E[\ell](k), \quad Q \in E(k), \quad \text{cLadder}(\ell, P, Q, P - Q) \mapsto \ell P, \ \ell P + Q$$

We can get the squared Tate pairing: $\lambda_P/\lambda_Q = X_{\ell P}/Z_{\ell P+Q} = e_{T,\ell}(P,Q)^2$ The pairing has order dividing $\ell = 2m \rightsquigarrow$ the square loses one bit of information.

Step 1: only compute ladder of order $m = \ell/2$.

$$CLADDER(m, P, Q, P - Q) \mapsto mP, mP + Q$$

Step 2: Linear translations. T=mP is a point of order 2: on the Kummer line, translation by T induces an involution. It acts linearly on coordinates, for example

$$T = (0:1).$$
 $T * (X_P, Z_P) = P + T = (Z_P, X_P)$

$$T = (A:B) \neq (0:1)$$
 $T * (X_P, Z_P) = P + T = (AX_P - BZ_P, AZ_P - BX_P)$

Consider an even integer $\ell=2m$.

$$P \in E[\ell](k), \quad Q \in E(k), \quad \text{CLADDER}(\ell, P, Q, P - Q) \mapsto \ell P, \ \ell P + Q$$

We can get the squared Tate pairing: $\lambda_P/\lambda_Q = X_{\ell P}/Z_{\ell P+Q} = e_{T,\ell}(P,Q)^2$ The pairing has order dividing $\ell=2m \leadsto$ the square loses one bit of information.

Step 1: only compute ladder of order $m = \ell/2$.

$$CLADDER(m, P, Q, P - Q) \mapsto mP, mP + Q$$

Step 2: Linear translations. T=mP is a point of order 2: on the Kummer line, translation by T induces an involution. It acts linearly on coordinates, for example

$$T = (0:1).$$
 $T * (X_P, Z_P) = P + T = (Z_P, X_P)$

$$T = (A:B) \neq (0:1)$$
 $T * (X_P, Z_P) = P + T = (AX_P - BZ_P, AZ_P - BX_P)$

Step 3: Monodromy.
$$mP + T \text{ is projectively} = 0_E \qquad \qquad \text{monodromy factor } \lambda_P' \\ (mP + Q) + T \text{ is projectively} = Q \qquad \qquad \text{monodromy factor } \lambda_Q'$$

Consider an even integer $\ell = 2m$.

$$P \in E[\ell](k), \quad Q \in E(k), \quad \text{CLADDER}(\ell, P, Q, P - Q) \mapsto \ell P, \ \ell P + Q$$

We can get the squared Tate pairing: $\lambda_P/\lambda_Q = X_{\ell P}/Z_{\ell P+Q} = e_{T,\ell}(P,Q)^2$ The pairing has order dividing $\ell=2m \leadsto$ the square loses one bit of information.

Step 1: only compute ladder of order $m = \ell/2$.

$$CLADDER(m, P, Q, P - Q) \mapsto mP, mP + Q$$

Step 2: Linear translations. T=mP is a point of order 2: on the Kummer line, translation by T induces an involution. It acts linearly on coordinates, for example

$$T = (0:1).$$
 $T * (X_P, Z_P) = P + T = (Z_P, X_P)$

$$T = (A:B) \neq (0:1)$$
 $T * (X_P, Z_P) = P + T = (AX_P - BZ_P, AZ_P - BX_P)$

$$\lambda_P/\lambda_Q = X_{mP+T}/Z_{(mP+Q)+T} = e_{T,\ell}(P,Q)$$
 without the square!

Cubical arithmetic in different models

	cDBL	cADD
Montgomery	3M 2S	3M 2S
Theta	3M 2S	3M 3S
Weierstrass	5M 4S	8M 2S

Appendix: Miller's algorithm

A Miller function is $f_{\ell,P} \in k(E)$ with divisor

$$\operatorname{div} f_{\ell,P} = (\ell - 1) (0_E) + ([\ell]P) - \ell (-P) \in \operatorname{Div}^0(E)$$

These rational functions satisfy

$$f_{i+j,P} = f_{i,P} \cdot f_{j,P} \cdot (l_{[i]P,[j]P}/v_{[j]P})$$

with $l_{R,S} = \text{line through } R \text{ and } S$, and $v_S = \text{vertical line through } S$.

Miller's algorithm: compute $f_{\ell,P}(Q)$ by:

- Fix an addition chain $(1, 2, \dots, \ell)$
- Step by step compute $(P, f_{1,P}(Q)), ([2]P, f_{2,P}(Q)), \dots, ([\ell]P, f_{\ell,P}(Q))$
- Step by Step compute $(P, f_{1,P}(Q)), ([2]P, f_{2,P}(Q)), \ldots, ([\ell]P, f_{\ell,P}(Q))$ (\leftarrow back to monodromy)

Appendix: x-only Montgomery arithmetic

(← go back)

$$\text{xDBL:} \begin{cases} Q = (X_P + Z_P)^2 \\ R = (X_P - Z_P)^2 \\ S = Q - R \\ [2]P = (QR : S(R + \frac{a+2}{4}S)) \end{cases}$$

$$\text{xADD:} \begin{cases} U = (X_P - Z_P)(X_Q + Z_Q) \\ V = (X_P + Z_P)(X_Q - Z_Q) \\ X_{P+Q} = Z_{P-Q} \cdot (U + V)^2 \\ Z_{P+Q} = X_{P-Q} \cdot (U - V)^2 \end{cases}$$

Appendix: (differential) addition chains

Fix $\ell \in \mathbb{Z}_{>0}$ a target scalar.

An addition chain is a sequence of integers $s=(n_0=0,n_1=1,n_2,n_4,\ldots,n_k=\ell)$ such that

$$n \in s \implies \exists n_i, n_j \in s : n = n_i + n_j$$

Example: an addition chain for $\ell=9$ is $s_9=(0,1,2,3,5,8,9)$

A differential addition chain is a sequence of integers $s=(n_0=0,n_1=1,n_2,n_4,\ldots,n_k=\ell)$ such that

$$n \in s \implies \exists n_i, n_j \in s : n = n_i + n_j \text{ and } n_i - n_j \in s$$

Example: s_9 is **not** a differential addition chain for $\ell = 9$:

we have 9 = 8 + 1, but 8 - 1 is not in the sequence.

Instead this one works: $s_9' = (0, 1, 2, 3, 5, 7, 9)$

 $(\leftarrow \mathsf{back} \; \mathsf{to} \; \mathsf{Miller's} \; \mathsf{algo})$