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Main character: pairings on elliptic curves

Elliptic curves: E : y2 = x3 + ax+ b, with a, b ∈ Fq

Points (x, y) ∈ Fq on the curve (+ a neutral element 0E) form a group.
P

Q

P+Q

P

Q

e(P,Q)

machinery...

Pairings are maps from subgroups/quotients of some E
to a finite field:

eℓ : G1 ×G2 → GT ⊆ F×q
(P,Q) 7→ eℓ(P,Q)

ℓ ∈ N

They satisfy

Bilinearity: e(P,Q+Q′) = e(P,Q) · e(P,Q′)
Nondegeneracy: for all P ∈ G1, Q ∈ G2 the maps
e(P, ·) and e(·, Q) aren’t constantly trivial.

...and many other useful properties
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Pairings: usage and applications
Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on F×q

Constructive use:

advanced functionalities in encryption, signatures, ZK proofs...
✓ Usually, freedom to choose base field Fp, curve E ⇝ optimize for fast arithmetic
tool in isogeny-based cryptography. Here, no control over p,E:

▶ E usually a random supersingular curve over Fp2 ,
▶ p subject to constraints ̸= speed (namely, p+ 1 smooth for fast Fp2 -isogenies)

× fast arithmetic not always available.

⇝ Need: make generic pairings fast.

generic ℓ-pairing: cost/bit Tate pairing Weil pairing

State of the art using Miller’s algo 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A
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1Cai, Lin, Zhao, Pairing Optimizations for Isogeny-based Cryptosystems, eprint 2024/575
2Robert, Fast pairings via biextensions and cubical arithmetic, eprint2024/517
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Preliminaries: divisors

Divisors: Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

Divisors form a group. We focus on the subgroup of divisors of degree 0:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Principal divisors: Given f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P )

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Fact: Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P )− (0E)]

[D] = [D′]
⇐⇒

D −D′ = div f
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How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P )− ℓ (−P ) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P )
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P,

. . . , [i]P , . . . , [ℓ]P
)

Alongside, compute
(
f1,P (Q), f2,P (Q),

. . . , fi,P (Q), . . . , fℓ,P (Q)
)

.

[i]P

[j]P

[i+j]P
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Working with x-only arithmetic

To compute line functions lR,S , vR for Miller’s algorithm,
we represent points on E as P = (XP : YP : ZP ).
Algebraic group law ⇝ tells how to add points P +Q.

YP = ±
√

g(XP , ZP ) ⇝ without Y , sign ambiguity:

(XP : ZP ) represents ± P

P
Q

P +Q

Not a group anymore! But there’s a pseudo-addition on E/±:
xDBL : ± P 7→ ±[2]P, xADD : (±P,±Q;±(P −Q)) 7→ ±(P +Q)

...and it’s quite fast to perform. 3 mult, 2 squarings on Montgomery models By2 = x3 +Ax2 + x.

xDBL :


Q = (XP + ZP )

2

R = (XP − ZP )
2

S = Q−R

[2]P = (QR : S(R+ a+2
4 S))

xADD :


U = (XP − ZP )(XQ + ZQ)

V = (XP + ZP )(XQ − ZQ)

XP+Q = ZP−Q · (U + V )2

ZP+Q = XP−Q · (U − V )2
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Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P ) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P ) 7→ ([ℓ]P, [ℓ+ 1]P ).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

. . . . . .

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

. . . . . .

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP
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3De Feo, Jao, Plût, Towards quantum-secure cryptosystems with isogenies, eprint.iacr.org/2011/506
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Core idea: monodromy

Walking on the helix: loop on the projection below ←→ up/down one floor!

On E: we compute [0]P = 0E , [1]P, [2]P, . . . , [ℓ]P = 0E ...back to the start

recall: E
∼−→ Pic0(E) = Div0(E)/Princ(E)

On Pic0(E), torsion relation [ℓ]P = 0 ⇝
[
ℓ(0E)− ℓ(−P )

]
= 0.

Now look above: instead of its quotient, look at Div0(E).

D = ℓ(0E)− ℓ(−P ) = div fℓ,P ̸= 0 ∈ Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller’s algorithm: while adding points 0E , P, [2]P, . . . , [ℓ]P = 0E ,
we accumulate divisor info: f0,P (Q), . . . , fℓ,P (Q) =

∏
j l[ij ]P,[i′j ]P (Q)/v[ij ]P (Q)= e(P,Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP )

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!
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Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing!

squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP )

ℓ·(¬ℓ+1)

(4xP )ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.
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Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).

Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = ZP−Q (U + V )2 ,

ZP+Q = XP−Q (U − V )2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V )2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V )2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing
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We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.5

Inverses can be pre-computed and batched: only one inversion per pairing
5Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings
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Other pairings

Just seen: from one Montgomery 3-point ladder with edited cADD ⇝
Non-reduced Tate pairing eT,ℓ(P,Q) = fℓ,P (Q) from projective coordinates (XℓP , ZℓP+Q).

What about other pairings? Also recoverable from ladders & some ratios!

Weil pairing
eW,ℓ : E[ℓ]× E[ℓ]→ µℓ (P,Q) 7→ fℓ,P (Q)/fℓ,Q(P )

This requires 2 · non-reduced Tate pairings ≈ 2 · cLadder.
ate pairing

eA,ℓ : G2 ×G1 → µℓ (P,Q) 7→ fλ,P (Q)
qk−1

ℓ

with λ ≡ q (mod ℓ), G1 = E[ℓ](Fk
q ), and G2 = E[ℓ] ∩ ker(πq − [q]).

Here, monodromy between one (shorter) cLadder and Frobenius πq:
Projectively, cLadder(λ, P,Q;P −Q) = [q]P +Q = πq(P +Q).
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Algebra alert:

Some (high-level) theory behind the result



Cubical arithmetic
We saw earlier:

ladder with usual xADD 7→ (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff
ladder with cADD 7→ (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!
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Cubical arithmetic as a way to get Miller functions
Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

div fℓ,P = ℓ(0E)− ℓ(−P ).

Projective coordinates X,Z are objects living in a line bundle L.

Even though they’re not meromorphic functions (like x, y, 1) in k(E), they have a zero locus.
For example, 0E = (1 : 0): ⇝ Z has a zero at 0E (...with multiplicity 2)
⇝ ∃ reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P )) = 2(−P ).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
.

Hope : g ∈ k(E), =⇒ div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Generally not well-def: must choose Pi, Qj carefully, compatible with cubical arithmetic.

Miller fns: P ∈ E[ℓ]. Build gℓ,P : R 7→ Z(R+ ℓP )Z(R)ℓ−1

Z(P )ℓ
⇝ div gℓ,P = 2 ·

(
ℓ(0)− ℓ(−P )

)
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End of the theory!

Some applications now



Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N ], with N smooth.

Let R ∈ E[N ]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing eN : E[N ]× E[N ]→ µN .
[In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

Alternating: e(P, P ) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
⇝ in part., ⟨P,Q⟩ = E[N ] ⇐⇒ e(P,Q) has order N .

Some details:
ζ = eN (P,Q) has order N

hb = eN (R,P ) = eN ([a]P + [b]Q,P ) = ζ−b

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa

DLog in E[N ]
↓ pairing

DLog in µN , much easier

✓ Speed: ∼ 40% cost reduction w.r.t. Miller’s algo. Very useful trick in isogeny protocols:
e.g., point compression (SIKE †, SQIsign2D): (a, b) is shorter than (XR, ZR).
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Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N ]× E[N ]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.
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Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benefits of the new approach on pairing-friendly curves?

⇝ Parallel paper: [LRZZ25] compares with Miller’s algorithm on pairing-friendly curves.[
Def/recall embedding degree: say E is an ell curve over Fq, and G ⊂ E[ℓ](Fq) has order ℓ.
The embedding degree is k if E[ℓ] is only defined over Fqk .

]
Speedups in Miller when k is even (denominator elimination) or composite.

× Both speedups not available in cubical arithmetic.

✓ still, cubical arithmetic gets faster when k > 1, i.e., some points lie in subfields Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:
curve families with odd prime embedding degree k (e.g. BW13, k = 13)
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✓ still, cubical arithmetic gets faster when k > 1, i.e., some points lie in subfields Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:
curve families with odd prime embedding degree k (e.g. BW13, k = 13)

6Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
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Further speedups?
Main idea of the tricks we saw: replace xADD with some cADD
where we change the “affine” scaling λ in of (λ ·XP+Q, λ · ZP+Q).

And the Montgomery ladder?

Good when constant-time is needed, code size is constrained, fast enough

Otherwise, not the fastest way to scalar-multiply ℓ · P
Questions:

Can we replace it with faster differential addition chains?

Or maybe double-and-add chains?

Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer in most contexts seems to be no :(
Crucial in cubical ladders: the difference points in xADD(P,Q;P −Q) are fixed.

This happens in Montgomery Ladders, doesn’t apply to DACs

workarounds: use full-coordinate (X,Y, Z) additions ⇝ expensive.
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Recap & further directions

By modifying projective scaling factors in x-only arithmetic on elliptic curves,
Montgomery ladders give pairings as immediate by-products.

⇝ implementation quirks: simple, easily constant-time, practical.
⇝ speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

In specific contexts, alternative computations to cLadder are worth comparing
(e.g. DoubleAndAdd, NAFs, ...)

Thank you for listening! Questions?
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Appendix: divisors

Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

The divisors of degree 0 on E form a group:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Given a rational function f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P )

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P )− (0E)]

(← back to Miller’s algo)
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Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP ) = P + T = (ZP , XP )

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP ) = P + T = (AXP −BZP , AZP −BXP )

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!
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Cubical arithmetic in different models

cDBL cADD

Montgomery 3M 2S 3M 2S
Theta 3M 2S 3M 3S

Weierstrass 5M 4S 8M 2S



Appendix: Miller’s algorithm

A Miller function is fℓ,P ∈ k(E) with divisor

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P )− ℓ (−P ) ∈ Div0(E)

These rational functions satisfy

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P )
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain (1, 2, . . . , ℓ)

Step by step compute (P, f1,P (Q)), ([2]P, f2,P (Q)), . . . , ([ℓ]P, fℓ,P (Q))

[i]P

[j]P

[i+j]P

(← back to monodromy)



Appendix: x-only Montgomery arithmetic

xDBL :


Q = (XP + ZP )

2

R = (XP − ZP )
2

S = Q−R

[2]P = (QR : S(R+ a+2
4 S))

xADD :


U = (XP − ZP )(XQ + ZQ)

V = (XP + ZP )(XQ − ZQ)

XP+Q = ZP−Q · (U + V )2

ZP+Q = XP−Q · (U − V )2

(← go back)



Appendix: (differential) addition chains

Fix ℓ ∈ Z>0 a target scalar.
An addition chain is a sequence of integers s = (n0 = 0, n1 = 1, n2, n4, . . . , nk = ℓ) such that

n ∈ s =⇒ ∃ni, nj ∈ s : n = ni + nj

Example: an addition chain for ℓ = 9 is s9 = (0, 1, 2, 3, 5, 8, 9)

A differential addition chain is a sequence of integers s = (n0 = 0, n1 = 1, n2, n4, . . . , nk = ℓ)
such that

n ∈ s =⇒ ∃ni, nj ∈ s : n = ni + nj and ni − nj ∈ s

Example: s9 is not a differential addition chain for ℓ = 9:
we have 9 = 8 + 1, but 8− 1 is not in the sequence.

Instead this one works: s′9 = (0, 1, 2, 3, 5, 7, 9)

(← back to Miller’s algo)


