
Montgomery ladders compute pairings

Alessandro Sferlazza
joint work with: G. Pope, K. Reijnders, D. Robert, B. Smith

https://eprint.iacr.org/2025/672

Technical University of Munich

Thursday 3 July 2025,
GRACE seminar, Inria Saclay

https://eprint.iacr.org/2025/672

Main character: pairings on elliptic curves

Elliptic curves: E : y2 = x3 + ax+ b, with a, b ∈ Fq

Points (x, y) ∈ Fq on the curve (+ a neutral element 0E) form a group.
P

Q

P+Q

P

Q

e(P,Q)

machinery...

Pairings are maps from subgroups/quotients of some E
to a finite field:

eℓ : G1 ×G2 → GT ⊆ F×q
(P,Q) 7→ eℓ(P,Q)

ℓ ∈ N

They satisfy

Bilinearity: e(P,Q+Q′) = e(P,Q) · e(P,Q′)
Nondegeneracy: for all P ∈ G1, Q ∈ G2 the maps
e(P, ·) and e(·, Q) aren’t constantly trivial.

...and many other useful properties

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 1 / 17

Main character: pairings on elliptic curves

Elliptic curves: E : y2 = x3 + ax+ b, with a, b ∈ Fq

Points (x, y) ∈ Fq on the curve (+ a neutral element 0E) form a group.
P

Q

P+Q

P

Q

e(P,Q)

machinery...

Pairings are maps from subgroups/quotients of some E
to a finite field:

eℓ : G1 ×G2 → GT ⊆ F×q
(P,Q) 7→ eℓ(P,Q)

ℓ ∈ N

They satisfy

Bilinearity: e(P,Q+Q′) = e(P,Q) · e(P,Q′)
Nondegeneracy: for all P ∈ G1, Q ∈ G2 the maps
e(P, ·) and e(·, Q) aren’t constantly trivial.

...and many other useful properties

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 1 / 17

Main character: pairings on elliptic curves

Elliptic curves: E : y2 = x3 + ax+ b, with a, b ∈ Fq

Points (x, y) ∈ Fq on the curve (+ a neutral element 0E) form a group.
P

Q

P+Q

P

Q

e(P,Q)

machinery...

Pairings are maps from subgroups/quotients of some E
to a finite field:

eℓ : G1 ×G2 → GT ⊆ F×q
(P,Q) 7→ eℓ(P,Q)

ℓ ∈ N

They satisfy

Bilinearity: e(P,Q+Q′) = e(P,Q) · e(P,Q′)
Nondegeneracy: for all P ∈ G1, Q ∈ G2 the maps
e(P, ·) and e(·, Q) aren’t constantly trivial.

...and many other useful properties

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 1 / 17

Pairings: usage and applications
Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on F×q

Constructive use:

advanced functionalities in encryption, signatures, ZK proofs...
✓ Usually, freedom to choose base field Fp, curve E ⇝ optimize for fast arithmetic
tool in isogeny-based cryptography. Here, no control over p,E:

▶ E usually a random supersingular curve over Fp2 ,
▶ p subject to constraints ̸= speed (namely, p+ 1 smooth for fast Fp2 -isogenies)

× fast arithmetic not always available.

⇝ Need: make generic pairings fast.

generic ℓ-pairing: cost/bit Tate pairing Weil pairing

State of the art using Miller’s algo 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 2 / 17

Pairings: usage and applications
Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on F×q
Constructive use:

advanced functionalities in encryption, signatures, ZK proofs...
✓ Usually, freedom to choose base field Fp, curve E ⇝ optimize for fast arithmetic

tool in isogeny-based cryptography. Here, no control over p,E:
▶ E usually a random supersingular curve over Fp2 ,
▶ p subject to constraints ̸= speed (namely, p+ 1 smooth for fast Fp2 -isogenies)

× fast arithmetic not always available.

⇝ Need: make generic pairings fast.

generic ℓ-pairing: cost/bit Tate pairing Weil pairing

State of the art using Miller’s algo 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 2 / 17

Pairings: usage and applications
Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on F×q
Constructive use:

advanced functionalities in encryption, signatures, ZK proofs...
✓ Usually, freedom to choose base field Fp, curve E ⇝ optimize for fast arithmetic
tool in isogeny-based cryptography. Here, no control over p,E:

▶ E usually a random supersingular curve over Fp2 ,
▶ p subject to constraints ̸= speed (namely, p+ 1 smooth for fast Fp2 -isogenies)

× fast arithmetic not always available.

⇝ Need: make generic pairings fast.

generic ℓ-pairing: cost/bit Tate pairing Weil pairing

State of the art using Miller’s algo 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 2 / 17

Pairings: usage and applications
Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on F×q
Constructive use:

advanced functionalities in encryption, signatures, ZK proofs...
✓ Usually, freedom to choose base field Fp, curve E ⇝ optimize for fast arithmetic
tool in isogeny-based cryptography. Here, no control over p,E:

▶ E usually a random supersingular curve over Fp2 ,
▶ p subject to constraints ̸= speed (namely, p+ 1 smooth for fast Fp2 -isogenies)

× fast arithmetic not always available.

⇝ Need: make generic pairings fast.

generic ℓ-pairing: cost/bit Tate pairing Weil pairing

State of the art using Miller’s algo 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 2 / 17

Pairings: usage and applications
Pairings: useful in different scenarios in cryptography.

Destructive use: transfer discrete logs on a curve E to easier discrete logs on F×q
Constructive use:

advanced functionalities in encryption, signatures, ZK proofs...
✓ Usually, freedom to choose base field Fp, curve E ⇝ optimize for fast arithmetic
tool in isogeny-based cryptography. Here, no control over p,E:

▶ E usually a random supersingular curve over Fp2 ,
▶ p subject to constraints ̸= speed (namely, p+ 1 smooth for fast Fp2 -isogenies)

× fast arithmetic not always available.

⇝ Need: make generic pairings fast.

generic ℓ-pairing: cost/bit Tate pairing Weil pairing

State of the art1 using Miller’s algo 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24]2 ⇝ our work 9M + 6S + 16A

1Cai, Lin, Zhao, Pairing Optimizations for Isogeny-based Cryptosystems, eprint 2024/575
2Robert, Fast pairings via biextensions and cubical arithmetic, eprint2024/517

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 2 / 17

eprint 2024/517

Preliminaries: divisors

Divisors: Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

Divisors form a group. We focus on the subgroup of divisors of degree 0:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Principal divisors: Given f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P)

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Fact: Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P)− (0E)]

[D] = [D′]
⇐⇒

D −D′ = div f

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 3 / 17

Preliminaries: divisors

Divisors: Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

Divisors form a group. We focus on the subgroup of divisors of degree 0:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Principal divisors: Given f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P)

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Fact: Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P)− (0E)]

[D] = [D′]
⇐⇒

D −D′ = div f

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 3 / 17

Preliminaries: divisors

Divisors: Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

Divisors form a group. We focus on the subgroup of divisors of degree 0:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Principal divisors: Given f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P)

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Fact: Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P)− (0E)]

[D] = [D′]
⇐⇒

D −D′ = div f

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 3 / 17

How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P,

. . . , [i]P , . . . , [ℓ]P
)

Alongside, compute
(
f1,P (Q), f2,P (Q),

. . . , fi,P (Q), . . . , fℓ,P (Q)
)

.

[i]P

[j]P

[i+j]P

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 4 / 17

How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P,

. . . , [i]P , . . . , [ℓ]P
)

Alongside, compute
(
f1,P (Q), f2,P (Q),

. . . , fi,P (Q), . . . , fℓ,P (Q)
)

.

[i]P

[j]P

[i+j]P

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 4 / 17

How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P,

. . . , [i]P , . . . , [ℓ]P
)

Alongside, compute
(
f1,P (Q), f2,P (Q),

. . . , fi,P (Q), . . . , fℓ,P (Q)
)

.

[i]P

[j]P

[i+j]P

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 4 / 17

How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P,

. . . , [i]P , . . . , [ℓ]P
)

Alongside, compute
(
f1,P (Q), f2,P (Q),

. . . , fi,P (Q), . . . , fℓ,P (Q)
)

.

[i]P

[j]P

[i+j]P

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 4 / 17

How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P,

. . . , [i]P , . . . , [ℓ]P
)

Alongside, compute
(
f1,P (Q), f2,P (Q),

. . . , fi,P (Q), . . . , fℓ,P (Q)
)

.

[i]P

[j]P

[i+j]P

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 4 / 17

How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P, . . . , [i]P ,

. . . , [ℓ]P
)

Alongside, compute
(
f1,P (Q), f2,P (Q), . . . , fi,P (Q),

. . . , fℓ,P (Q)
)

.

[i]P

[j]P

[i+j]P

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 4 / 17

How pairings are computed in practice: Miller’s algorithm
Working example: the Tate–Lichtenbaum pairing.
Fix degree ℓ ∈ Z, a base field k = Fq containing ℓ-th roots of unity µℓ.

et,ℓ : G1 ×G2 → k×/(k×)ℓ

(P,Q) 7→ fℓ,P (Q)
with

G1 = E[ℓ](k)
G2 = E(k)/[ℓ]E(k)

where fℓ,P ∈ k(E) is a Miller function attached to P , i.e. satisfies

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

✓ Other widely used pairings (Weil, (optimal) ate...) are also defined via Miller functions.

Addition law on E ⇝ addition law for Miller fns fi,P :

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain: compute
(
P, [2]P, . . . , [i]P , . . . , [ℓ]P

)
Alongside, compute

(
f1,P (Q), f2,P (Q), . . . , fi,P (Q), . . . , fℓ,P (Q)

)
.

[i]P

[j]P

[i+j]P

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 4 / 17

Working with x-only arithmetic

To compute line functions lR,S , vR for Miller’s algorithm,
we represent points on E as P = (XP : YP : ZP).
Algebraic group law ⇝ tells how to add points P +Q.

YP = ±
√

g(XP , ZP) ⇝ without Y , sign ambiguity:

(XP : ZP) represents ± P

P
Q

P +Q

Not a group anymore! But there’s a pseudo-addition on E/±:
xDBL : ± P 7→ ±[2]P, xADD : (±P,±Q;±(P −Q)) 7→ ±(P +Q)

...and it’s quite fast to perform. 3 mult, 2 squarings on Montgomery models By2 = x3 +Ax2 + x.

xDBL :


Q = (XP + ZP)

2

R = (XP − ZP)
2

S = Q−R

[2]P = (QR : S(R+ a+2
4 S))

xADD :


U = (XP − ZP)(XQ + ZQ)

V = (XP + ZP)(XQ − ZQ)

XP+Q = ZP−Q · (U + V)2

ZP+Q = XP−Q · (U − V)2

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 5 / 17

Working with x-only arithmetic

To compute line functions lR,S , vR for Miller’s algorithm,
we represent points on E as P = (XP : YP : ZP).
Algebraic group law ⇝ tells how to add points P +Q.

YP = ±
√
g(XP , ZP) ⇝ without Y , sign ambiguity:

(XP : ZP) represents ± P

P

−P

Q

−Q

P +Q

P −Q

Not a group anymore! But there’s a pseudo-addition on E/±:
xDBL : ± P 7→ ±[2]P, xADD : (±P,±Q;±(P −Q)) 7→ ±(P +Q)

...and it’s quite fast to perform. 3 mult, 2 squarings on Montgomery models By2 = x3 +Ax2 + x.

xDBL :


Q = (XP + ZP)

2

R = (XP − ZP)
2

S = Q−R

[2]P = (QR : S(R+ a+2
4 S))

xADD :


U = (XP − ZP)(XQ + ZQ)

V = (XP + ZP)(XQ − ZQ)

XP+Q = ZP−Q · (U + V)2

ZP+Q = XP−Q · (U − V)2

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 5 / 17

Working with x-only arithmetic

To compute line functions lR,S , vR for Miller’s algorithm,
we represent points on E as P = (XP : YP : ZP).
Algebraic group law ⇝ tells how to add points P +Q.

YP = ±
√
g(XP , ZP) ⇝ without Y , sign ambiguity:

(XP : ZP) represents ± P

P

−P

Q

−Q

P +Q

P −QNot a group anymore! But there’s a pseudo-addition on E/±:
xDBL : ± P 7→ ±[2]P, xADD : (±P,±Q;±(P −Q)) 7→ ±(P +Q)

...and it’s quite fast to perform. 3 mult, 2 squarings on Montgomery models By2 = x3 +Ax2 + x.

xDBL :


Q = (XP + ZP)

2

R = (XP − ZP)
2

S = Q−R

[2]P = (QR : S(R+ a+2
4 S))

xADD :


U = (XP − ZP)(XQ + ZQ)

V = (XP + ZP)(XQ − ZQ)

XP+Q = ZP−Q · (U + V)2

ZP+Q = XP−Q · (U − V)2

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 5 / 17

Working with x-only arithmetic

To compute line functions lR,S , vR for Miller’s algorithm,
we represent points on E as P = (XP : YP : ZP).
Algebraic group law ⇝ tells how to add points P +Q.

YP = ±
√
g(XP , ZP) ⇝ without Y , sign ambiguity:

(XP : ZP) represents ± P

P

−P

Q

−Q

P +Q

P −QNot a group anymore! But there’s a pseudo-addition on E/±:
xDBL : ± P 7→ ±[2]P, xADD : (±P,±Q;±(P −Q)) 7→ ±(P +Q)

...and it’s quite fast to perform. 3 mult, 2 squarings on Montgomery models By2 = x3 +Ax2 + x.

xDBL :


Q = (XP + ZP)

2

R = (XP − ZP)
2

S = Q−R

[2]P = (QR : S(R+ a+2
4 S))

xADD :


U = (XP − ZP)(XQ + ZQ)

V = (XP + ZP)(XQ − ZQ)

XP+Q = ZP−Q · (U + V)2

ZP+Q = XP−Q · (U − V)2

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 5 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−Q

xDBL xADDP

xDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDP

xDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−Q

xDBL xADDP

xDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

Multiplying points by scalars: the Montgomery ladder

Goal: compute scalar multiplication P 7→ [ℓ]P
±[ℓ]P = [ℓ](±P) ⇝ use x-only arithmetic!

We have operations on E/±:
xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine xDBL,xADD to form a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalization useful later:3

consider 3PtLadder with offset Q.
Needs extra input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

−P +Q

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDP

xDBLxADDP

3De Feo, Jao, Plût, Towards quantum-secure cryptosystems with isogenies, eprint.iacr.org/2011/506
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 6 / 17

eprint.iacr.org/2011/506

Core idea: monodromy

Walking on the helix: loop on the projection below ←→ up/down one floor!

On E: we compute [0]P = 0E , [1]P, [2]P, . . . , [ℓ]P = 0E ...back to the start

recall: E
∼−→ Pic0(E) = Div0(E)/Princ(E)

On Pic0(E), torsion relation [ℓ]P = 0 ⇝
[
ℓ(0E)− ℓ(−P)

]
= 0.

Now look above: instead of its quotient, look at Div0(E).

D = ℓ(0E)− ℓ(−P) = div fℓ,P ̸= 0 ∈ Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller’s algorithm: while adding points 0E , P, [2]P, . . . , [ℓ]P = 0E ,
we accumulate divisor info: f0,P (Q), . . . , fℓ,P (Q) =

∏
j l[ij]P,[i′j]P (Q)/v[ij]P (Q)= e(P,Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 7 / 17

Core idea: monodromy

Walking on the helix: loop on the projection below ←→ up/down one floor!

On E: we compute [0]P = 0E , [1]P, [2]P, . . . , [ℓ]P = 0E ...back to the start

recall: E
∼−→ Pic0(E) = Div0(E)/Princ(E)

On Pic0(E), torsion relation [ℓ]P = 0 ⇝
[
ℓ(0E)− ℓ(−P)

]
= 0.

Now look above: instead of its quotient, look at Div0(E).

D = ℓ(0E)− ℓ(−P) = div fℓ,P ̸= 0 ∈ Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller’s algorithm: while adding points 0E , P, [2]P, . . . , [ℓ]P = 0E ,
we accumulate divisor info: f0,P (Q), . . . , fℓ,P (Q) =

∏
j l[ij]P,[i′j]P (Q)/v[ij]P (Q)= e(P,Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 7 / 17

Core idea: monodromy

Walking on the helix: loop on the projection below ←→ up/down one floor!

On E: we compute [0]P = 0E , [1]P, [2]P, . . . , [ℓ]P = 0E ...back to the start

recall: E
∼−→ Pic0(E) = Div0(E)/Princ(E)

On Pic0(E), torsion relation [ℓ]P = 0 ⇝
[
ℓ(0E)− ℓ(−P)

]
= 0.

Now look above: instead of its quotient, look at Div0(E).

D = ℓ(0E)− ℓ(−P) = div fℓ,P ̸= 0 ∈ Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller’s algorithm: while adding points 0E , P, [2]P, . . . , [ℓ]P = 0E ,
we accumulate divisor info: f0,P (Q), . . . , fℓ,P (Q) =

∏
j l[ij]P,[i′j]P (Q)/v[ij]P (Q)= e(P,Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 7 / 17

Core idea: monodromy

Walking on the helix: loop on the projection below ←→ up/down one floor!

On E: we compute [0]P = 0E , [1]P, [2]P, . . . , [ℓ]P = 0E ...back to the start

recall: E
∼−→ Pic0(E) = Div0(E)/Princ(E)

On Pic0(E), torsion relation [ℓ]P = 0 ⇝
[
ℓ(0E)− ℓ(−P)

]
= 0.

Now look above: instead of its quotient, look at Div0(E).

D = ℓ(0E)− ℓ(−P) = div fℓ,P ̸= 0 ∈ Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller’s algorithm: while adding points 0E , P, [2]P, . . . , [ℓ]P = 0E ,
we accumulate divisor info: f0,P (Q), . . . , fℓ,P (Q) =

∏
j l[ij]P,[i′j]P (Q)/v[ij]P (Q)= e(P,Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 7 / 17

Core idea: monodromy

Walking on the helix: loop on the projection below ←→ up/down one floor!

On E: we compute [0]P = 0E , [1]P, [2]P, . . . , [ℓ]P = 0E ...back to the start

recall: E
∼−→ Pic0(E) = Div0(E)/Princ(E)

On Pic0(E), torsion relation [ℓ]P = 0 ⇝
[
ℓ(0E)− ℓ(−P)

]
= 0.

Now look above: instead of its quotient, look at Div0(E).

D = ℓ(0E)− ℓ(−P) = div fℓ,P ̸= 0 ∈ Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller’s algorithm: while adding points 0E , P, [2]P, . . . , [ℓ]P = 0E ,
we accumulate divisor info: f0,P (Q), . . . , fℓ,P (Q) =

∏
j l[ij]P,[i′j]P (Q)/v[ij]P (Q)= e(P,Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor.

Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 7 / 17

Core idea: monodromy

Walking on the helix: loop on the projection below ←→ up/down one floor!

On E: we compute [0]P = 0E , [1]P, [2]P, . . . , [ℓ]P = 0E ...back to the start

recall: E
∼−→ Pic0(E) = Div0(E)/Princ(E)

On Pic0(E), torsion relation [ℓ]P = 0 ⇝
[
ℓ(0E)− ℓ(−P)

]
= 0.

Now look above: instead of its quotient, look at Div0(E).

D = ℓ(0E)− ℓ(−P) = div fℓ,P ̸= 0 ∈ Div0(E).

Even if [D] = [0], the representative D carries nontrivial information: pairings!

Monodromy in Miller’s algorithm: while adding points 0E , P, [2]P, . . . , [ℓ]P = 0E ,
we accumulate divisor info: f0,P (Q), . . . , fℓ,P (Q) =

∏
j l[ij]P,[i′j]P (Q)/v[ij]P (Q)= e(P,Q).

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)

⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 7 / 17

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing!

squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 8 / 17

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing!

squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 8 / 17

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing!

squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 8 / 17

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing!

squared, + garbage

λQ/λP = eT,ℓ(P,Q)

2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 8 / 17

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 8 / 17

Montgomery ladders almost compute pairings
P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on4

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

4notation: ¬ℓ = bitwise negation of the bit representation of ℓ
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 8 / 17

Montgomery ladders almost compute pairings
P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

We look at the 3PtLadder where P,Q interact. Observe monodromy factors:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on4

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

4notation: ¬ℓ = bitwise negation of the bit representation of ℓ
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 8 / 17

Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).

Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = ZP−Q (U + V)2 ,

ZP+Q = XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = ZP−Q (U + V)2 ,

ZP+Q = XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = 2 · ZP−Q (U + V)2 ,

ZP+Q = 2 ·XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = 3 · ZP−Q (U + V)2 ,

ZP+Q = 3 ·XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = λ · ZP−Q (U + V)2 ,

ZP+Q = λ ·XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = ZP−Q (U + V)2 ,

ZP+Q = XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

Montgomery ladders compute pairings

Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = ZP−Q (U + V)2 ,

ZP+Q = XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

Montgomery ladders compute pairings
Remember xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

U, V = ...

XP+Q = ZP−Q (U + V)2 ,

ZP+Q = XP−Q (U − V)2 .

⇝
U, V = ...

XP+Q = (4XP−Q)
−1 · (U + V)2 ,

ZP+Q = (4ZP−Q)
−1 · (U − V)2 .

We call this cubical differential addition.

Set cDBL = xDBL and replace cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′Q/λ
′
P = ZℓP+Q/XℓP = eT,ℓ(P,Q)2 without extra stuff!

We recover eT,ℓ exactly when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.5

Inverses can be pre-computed and batched: only one inversion per pairing
5Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 9 / 17

https://github.com/GiacomoPope/cubical-pairings

Other pairings

Just seen: from one Montgomery 3-point ladder with edited cADD ⇝
Non-reduced Tate pairing eT,ℓ(P,Q) = fℓ,P (Q) from projective coordinates (XℓP , ZℓP+Q).

What about other pairings? Also recoverable from ladders & some ratios!

Weil pairing
eW,ℓ : E[ℓ]× E[ℓ]→ µℓ (P,Q) 7→ fℓ,P (Q)/fℓ,Q(P)

This requires 2 · non-reduced Tate pairings ≈ 2 · cLadder.
ate pairing

eA,ℓ : G2 ×G1 → µℓ (P,Q) 7→ fλ,P (Q)
qk−1

ℓ

with λ ≡ q (mod ℓ), G1 = E[ℓ](Fk
q), and G2 = E[ℓ] ∩ ker(πq − [q]).

Here, monodromy between one (shorter) cLadder and Frobenius πq:
Projectively, cLadder(λ, P,Q;P −Q) = [q]P +Q = πq(P +Q).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 10 / 17

Other pairings

Just seen: from one Montgomery 3-point ladder with edited cADD ⇝
Non-reduced Tate pairing eT,ℓ(P,Q) = fℓ,P (Q) from projective coordinates (XℓP , ZℓP+Q).

What about other pairings? Also recoverable from ladders & some ratios!

Weil pairing
eW,ℓ : E[ℓ]× E[ℓ]→ µℓ (P,Q) 7→ fℓ,P (Q)/fℓ,Q(P)

This requires 2 · non-reduced Tate pairings ≈ 2 · cLadder.
ate pairing

eA,ℓ : G2 ×G1 → µℓ (P,Q) 7→ fλ,P (Q)
qk−1

ℓ

with λ ≡ q (mod ℓ), G1 = E[ℓ](Fk
q), and G2 = E[ℓ] ∩ ker(πq − [q]).

Here, monodromy between one (shorter) cLadder and Frobenius πq:
Projectively, cLadder(λ, P,Q;P −Q) = [q]P +Q = πq(P +Q).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 10 / 17

Other pairings

Just seen: from one Montgomery 3-point ladder with edited cADD ⇝
Non-reduced Tate pairing eT,ℓ(P,Q) = fℓ,P (Q) from projective coordinates (XℓP , ZℓP+Q).

What about other pairings? Also recoverable from ladders & some ratios!

Weil pairing
eW,ℓ : E[ℓ]× E[ℓ]→ µℓ (P,Q) 7→ fℓ,P (Q)/fℓ,Q(P)

This requires 2 · non-reduced Tate pairings ≈ 2 · cLadder.

ate pairing

eA,ℓ : G2 ×G1 → µℓ (P,Q) 7→ fλ,P (Q)
qk−1

ℓ

with λ ≡ q (mod ℓ), G1 = E[ℓ](Fk
q), and G2 = E[ℓ] ∩ ker(πq − [q]).

Here, monodromy between one (shorter) cLadder and Frobenius πq:
Projectively, cLadder(λ, P,Q;P −Q) = [q]P +Q = πq(P +Q).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 10 / 17

Other pairings

Just seen: from one Montgomery 3-point ladder with edited cADD ⇝
Non-reduced Tate pairing eT,ℓ(P,Q) = fℓ,P (Q) from projective coordinates (XℓP , ZℓP+Q).

What about other pairings? Also recoverable from ladders & some ratios!

Weil pairing
eW,ℓ : E[ℓ]× E[ℓ]→ µℓ (P,Q) 7→ fℓ,P (Q)/fℓ,Q(P)

This requires 2 · non-reduced Tate pairings ≈ 2 · cLadder.
ate pairing

eA,ℓ : G2 ×G1 → µℓ (P,Q) 7→ fλ,P (Q)
qk−1

ℓ

with λ ≡ q (mod ℓ), G1 = E[ℓ](Fk
q), and G2 = E[ℓ] ∩ ker(πq − [q]).

Here, monodromy between one (shorter) cLadder and Frobenius πq:
Projectively, cLadder(λ, P,Q;P −Q) = [q]P +Q = πq(P +Q).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 10 / 17

Algebra alert:

Some (high-level) theory behind the result

Cubical arithmetic
We saw earlier:

ladder with usual xADD 7→ (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff
ladder with cADD 7→ (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 11 / 17

Cubical arithmetic
We saw earlier:

ladder with usual xADD 7→ (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff
ladder with cADD 7→ (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 11 / 17

Cubical arithmetic
We saw earlier:

ladder with usual xADD 7→ (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff
ladder with cADD 7→ (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3

Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 11 / 17

Cubical arithmetic
We saw earlier:

ladder with usual xADD 7→ (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff
ladder with cADD 7→ (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 11 / 17

Cubical arithmetic
We saw earlier:

ladder with usual xADD 7→ (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff
ladder with cADD 7→ (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 11 / 17

Cubical arithmetic
We saw earlier:

ladder with usual xADD 7→ (XP+Q, ZP+Q) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2·stuff
ladder with cADD 7→ (XP+Q/µ, ZP+Q/µ) ⇝ ZℓP+Q/XℓP = eT,ℓ(P,Q)2

There’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement: if Γ(L) = ⟨X,Z⟩, there’s a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read as follows: t∗PL ←→ scaling λ of coordinates XP , ZP

Fix scaling of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

Then, cADD and cDBL are special cases:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 11 / 17

Cubical arithmetic as a way to get Miller functions
Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

div fℓ,P = ℓ(0E)− ℓ(−P).

Projective coordinates X,Z are objects living in a line bundle L.

Even though they’re not meromorphic functions (like x, y, 1) in k(E), they have a zero locus.
For example, 0E = (1 : 0): ⇝ Z has a zero at 0E (...with multiplicity 2)
⇝ ∃ reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
.

Hope : g ∈ k(E), =⇒ div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Generally not well-def: must choose Pi, Qj carefully, compatible with cubical arithmetic.

Miller fns: P ∈ E[ℓ]. Build gℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
⇝ div gℓ,P = 2 ·

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 12 / 17

Cubical arithmetic as a way to get Miller functions
Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

div fℓ,P = ℓ(0E)− ℓ(−P).

Projective coordinates X,Z are objects living in a line bundle L.

Even though they’re not meromorphic functions (like x, y, 1) in k(E), they have a zero locus.
For example, 0E = (1 : 0): ⇝ Z has a zero at 0E (...with multiplicity 2)

⇝ ∃ reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
.

Hope : g ∈ k(E), =⇒ div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Generally not well-def: must choose Pi, Qj carefully, compatible with cubical arithmetic.

Miller fns: P ∈ E[ℓ]. Build gℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
⇝ div gℓ,P = 2 ·

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 12 / 17

Cubical arithmetic as a way to get Miller functions
Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

div fℓ,P = ℓ(0E)− ℓ(−P).

Projective coordinates X,Z are objects living in a line bundle L.

Even though they’re not meromorphic functions (like x, y, 1) in k(E), they have a zero locus.
For example, 0E = (1 : 0): ⇝ Z has a zero at 0E (...with multiplicity 2)
⇝ ∃ reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
.

Hope : g ∈ k(E), =⇒ div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Generally not well-def: must choose Pi, Qj carefully, compatible with cubical arithmetic.

Miller fns: P ∈ E[ℓ]. Build gℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
⇝ div gℓ,P = 2 ·

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 12 / 17

Cubical arithmetic as a way to get Miller functions
Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

div fℓ,P = ℓ(0E)− ℓ(−P).

Projective coordinates X,Z are objects living in a line bundle L.

Even though they’re not meromorphic functions (like x, y, 1) in k(E), they have a zero locus.
For example, 0E = (1 : 0): ⇝ Z has a zero at 0E (...with multiplicity 2)
⇝ ∃ reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
.

Hope : g ∈ k(E), =⇒ div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Generally not well-def: must choose Pi, Qj carefully, compatible with cubical arithmetic.

Miller fns: P ∈ E[ℓ]. Build gℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
⇝ div gℓ,P = 2 ·

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 12 / 17

Cubical arithmetic as a way to get Miller functions
Main ingredient for pairings: compute rational fns in k(E) with prescribed divisor:

div fℓ,P = ℓ(0E)− ℓ(−P).

Projective coordinates X,Z are objects living in a line bundle L.

Even though they’re not meromorphic functions (like x, y, 1) in k(E), they have a zero locus.
For example, 0E = (1 : 0): ⇝ Z has a zero at 0E (...with multiplicity 2)
⇝ ∃ reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
.

Hope : g ∈ k(E), =⇒ div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Generally not well-def: must choose Pi, Qj carefully, compatible with cubical arithmetic.

Miller fns: P ∈ E[ℓ]. Build gℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
⇝ div gℓ,P = 2 ·

(
ℓ(0)− ℓ(−P)

)
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 12 / 17

End of the theory!

Some applications now

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing eN : E[N]× E[N]→ µN .
[In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
⇝ in part., ⟨P,Q⟩ = E[N] ⇐⇒ e(P,Q) has order N .

Some details:
ζ = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa

DLog in E[N]
↓ pairing

DLog in µN , much easier

✓ Speed: ∼ 40% cost reduction w.r.t. Miller’s algo. Very useful trick in isogeny protocols:
e.g., point compression (SIKE †, SQIsign2D): (a, b) is shorter than (XR, ZR).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 13 / 17

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing eN : E[N]× E[N]→ µN .
[In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
⇝ in part., ⟨P,Q⟩ = E[N] ⇐⇒ e(P,Q) has order N .

Some details:
ζ = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa

DLog in E[N]
↓ pairing

DLog in µN , much easier

✓ Speed: ∼ 40% cost reduction w.r.t. Miller’s algo. Very useful trick in isogeny protocols:
e.g., point compression (SIKE †, SQIsign2D): (a, b) is shorter than (XR, ZR).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 13 / 17

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing eN : E[N]× E[N]→ µN .
[In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
⇝ in part., ⟨P,Q⟩ = E[N] ⇐⇒ e(P,Q) has order N .

Some details:
ζ = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa

DLog in E[N]
↓ pairing

DLog in µN , much easier

✓ Speed: ∼ 40% cost reduction w.r.t. Miller’s algo. Very useful trick in isogeny protocols:
e.g., point compression (SIKE †, SQIsign2D): (a, b) is shorter than (XR, ZR).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 13 / 17

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing eN : E[N]× E[N]→ µN .
[In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
⇝ in part., ⟨P,Q⟩ = E[N] ⇐⇒ e(P,Q) has order N .

Some details:
ζ = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa

DLog in E[N]
↓ pairing

DLog in µN , much easier

✓ Speed: ∼ 40% cost reduction w.r.t. Miller’s algo. Very useful trick in isogeny protocols:
e.g., point compression (SIKE †, SQIsign2D): (a, b) is shorter than (XR, ZR).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 13 / 17

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

Exploit the Weil pairing eN : E[N]× E[N]→ µN .
[In isogeny applications, the (2×faster) Tate pairing often shares the same properties:]

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
⇝ in part., ⟨P,Q⟩ = E[N] ⇐⇒ e(P,Q) has order N .

Some details:
ζ = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa

DLog in E[N]
↓ pairing

DLog in µN , much easier

✓ Speed: ∼ 40% cost reduction w.r.t. Miller’s algo. Very useful trick in isogeny protocols:
e.g., point compression (SIKE †, SQIsign2D): (a, b) is shorter than (XR, ZR).

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 13 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Further applications: torsion bases, supersingularity testing
Weil pairing: eW,N : E[N]× E[N]→ µN .

Non-degenerate =⇒ e(P,Q) has order N iff (P,Q) are a torsion basis.

Use cases in CSIDH, key agreement based on group actions on isogenies.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi, N |#E(Fq)

Sample random points P,Q

Do P,Q have order N? Do they form a torsion basis? Test order of e(P,Q) ∈ µN .

[alternative: trial multiplication P 7→ [N/ℓi]P . Pairing + order testing is much faster ✓]

Application #2: Supersingularity verification
[In CSIDH, the public key must be a supersingular curve E/Fp ⇝ public key validation ✓]

Let E/Fp2 be a supersingular curve with E(Fp2) ∼= (Z/(p+ 1)Z)2.
Try to generate a (p+ 1)-torsion basis (#1). If success, return “E is supersingular”.

Retry few times. fail if we find P with [p+ 1]P ̸= 0.

⇝ Probability of false negatives: 0. Probability of false positives: negligible.

✓ CSIDH uses even embedding degree k = 2 ⇝ only ∼ 7% cost reduction.
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 14 / 17

Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benefits of the new approach on pairing-friendly curves?

⇝ Parallel paper: [LRZZ25] compares with Miller’s algorithm on pairing-friendly curves.[
Def/recall embedding degree: say E is an ell curve over Fq, and G ⊂ E[ℓ](Fq) has order ℓ.
The embedding degree is k if E[ℓ] is only defined over Fqk .

]
Speedups in Miller when k is even (denominator elimination) or composite.

× Both speedups not available in cubical arithmetic.

✓ still, cubical arithmetic gets faster when k > 1, i.e., some points lie in subfields Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:
curve families with odd prime embedding degree k (e.g. BW13, k = 13)

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 15 / 17

Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benefits of the new approach on pairing-friendly curves?

⇝ Parallel paper: [LRZZ25]6 compares with Miller’s algorithm on pairing-friendly curves.

[
Def/recall embedding degree: say E is an ell curve over Fq, and G ⊂ E[ℓ](Fq) has order ℓ.
The embedding degree is k if E[ℓ] is only defined over Fqk .

]
Speedups in Miller when k is even (denominator elimination) or composite.

× Both speedups not available in cubical arithmetic.

✓ still, cubical arithmetic gets faster when k > 1, i.e., some points lie in subfields Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:
curve families with odd prime embedding degree k (e.g. BW13, k = 13)

6Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 15 / 17

eprint.iacr.org/2025/670

Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benefits of the new approach on pairing-friendly curves?

⇝ Parallel paper: [LRZZ25]6 compares with Miller’s algorithm on pairing-friendly curves.[
Def/recall embedding degree: say E is an ell curve over Fq, and G ⊂ E[ℓ](Fq) has order ℓ.
The embedding degree is k if E[ℓ] is only defined over Fqk .

]

Speedups in Miller when k is even (denominator elimination) or composite.

× Both speedups not available in cubical arithmetic.

✓ still, cubical arithmetic gets faster when k > 1, i.e., some points lie in subfields Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:
curve families with odd prime embedding degree k (e.g. BW13, k = 13)

6Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 15 / 17

eprint.iacr.org/2025/670

Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benefits of the new approach on pairing-friendly curves?

⇝ Parallel paper: [LRZZ25]6 compares with Miller’s algorithm on pairing-friendly curves.[
Def/recall embedding degree: say E is an ell curve over Fq, and G ⊂ E[ℓ](Fq) has order ℓ.
The embedding degree is k if E[ℓ] is only defined over Fqk .

]
Speedups in Miller when k is even (denominator elimination) or composite.

× Both speedups not available in cubical arithmetic.

✓ still, cubical arithmetic gets faster when k > 1, i.e., some points lie in subfields Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:

curve families with odd prime embedding degree k (e.g. BW13, k = 13)

6Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 15 / 17

eprint.iacr.org/2025/670

Speedups in pairing-based crypto?

Main motivation of cubical pairings: generic pairings in isogeny-based crypto.
Any benefits of the new approach on pairing-friendly curves?

⇝ Parallel paper: [LRZZ25]6 compares with Miller’s algorithm on pairing-friendly curves.[
Def/recall embedding degree: say E is an ell curve over Fq, and G ⊂ E[ℓ](Fq) has order ℓ.
The embedding degree is k if E[ℓ] is only defined over Fqk .

]
Speedups in Miller when k is even (denominator elimination) or composite.

× Both speedups not available in cubical arithmetic.

✓ still, cubical arithmetic gets faster when k > 1, i.e., some points lie in subfields Fq ⊂ Fqk

⇝ in some cases, cubical arithmetic can be faster than Miller’s algorithm:
curve families with odd prime embedding degree k (e.g. BW13, k = 13)

6Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 15 / 17

eprint.iacr.org/2025/670

Further speedups?
Main idea of the tricks we saw: replace xADD with some cADD
where we change the “affine” scaling λ in of (λ ·XP+Q, λ · ZP+Q).

And the Montgomery ladder?

Good when constant-time is needed, code size is constrained, fast enough

Otherwise, not the fastest way to scalar-multiply ℓ · P
Questions:

Can we replace it with faster differential addition chains?

Or maybe double-and-add chains?

Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer in most contexts seems to be no :(
Crucial in cubical ladders: the difference points in xADD(P,Q;P −Q) are fixed.

This happens in Montgomery Ladders, doesn’t apply to DACs

workarounds: use full-coordinate (X,Y, Z) additions ⇝ expensive.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 16 / 17

Further speedups?
Main idea of the tricks we saw: replace xADD with some cADD
where we change the “affine” scaling λ in of (λ ·XP+Q, λ · ZP+Q).

And the Montgomery ladder?

Good when constant-time is needed, code size is constrained, fast enough

Otherwise, not the fastest way to scalar-multiply ℓ · P
Questions:

Can we replace it with faster differential addition chains?

Or maybe double-and-add chains?

Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer in most contexts seems to be no :(
Crucial in cubical ladders: the difference points in xADD(P,Q;P −Q) are fixed.

This happens in Montgomery Ladders, doesn’t apply to DACs

workarounds: use full-coordinate (X,Y, Z) additions ⇝ expensive.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 16 / 17

Further speedups?
Main idea of the tricks we saw: replace xADD with some cADD
where we change the “affine” scaling λ in of (λ ·XP+Q, λ · ZP+Q).

And the Montgomery ladder?

Good when constant-time is needed, code size is constrained, fast enough

Otherwise, not the fastest way to scalar-multiply ℓ · P

Questions:

Can we replace it with faster differential addition chains?

Or maybe double-and-add chains?

Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer in most contexts seems to be no :(
Crucial in cubical ladders: the difference points in xADD(P,Q;P −Q) are fixed.

This happens in Montgomery Ladders, doesn’t apply to DACs

workarounds: use full-coordinate (X,Y, Z) additions ⇝ expensive.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 16 / 17

Further speedups?
Main idea of the tricks we saw: replace xADD with some cADD
where we change the “affine” scaling λ in of (λ ·XP+Q, λ · ZP+Q).

And the Montgomery ladder?

Good when constant-time is needed, code size is constrained, fast enough

Otherwise, not the fastest way to scalar-multiply ℓ · P
Questions:

Can we replace it with faster differential addition chains?

Or maybe double-and-add chains?

Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer in most contexts seems to be no :(
Crucial in cubical ladders: the difference points in xADD(P,Q;P −Q) are fixed.

This happens in Montgomery Ladders, doesn’t apply to DACs

workarounds: use full-coordinate (X,Y, Z) additions ⇝ expensive.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 16 / 17

Further speedups?
Main idea of the tricks we saw: replace xADD with some cADD
where we change the “affine” scaling λ in of (λ ·XP+Q, λ · ZP+Q).

And the Montgomery ladder?

Good when constant-time is needed, code size is constrained, fast enough

Otherwise, not the fastest way to scalar-multiply ℓ · P
Questions:

Can we replace it with faster differential addition chains?

Or maybe double-and-add chains?

Miller loops can be sped up by NAFs/windowing/... Can we do it too?

The answer in most contexts seems to be no :(
Crucial in cubical ladders: the difference points in xADD(P,Q;P −Q) are fixed.

This happens in Montgomery Ladders, doesn’t apply to DACs

workarounds: use full-coordinate (X,Y, Z) additions ⇝ expensive.

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 16 / 17

Recap & further directions

By modifying projective scaling factors in x-only arithmetic on elliptic curves,
Montgomery ladders give pairings as immediate by-products.

⇝ implementation quirks: simple, easily constant-time, practical.
⇝ speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

In specific contexts, alternative computations to cLadder are worth comparing
(e.g. DoubleAndAdd, NAFs, ...)

Thank you for listening! Questions?

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 17 / 17

Recap & further directions

By modifying projective scaling factors in x-only arithmetic on elliptic curves,
Montgomery ladders give pairings as immediate by-products.

⇝ implementation quirks: simple, easily constant-time, practical.
⇝ speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

In specific contexts, alternative computations to cLadder are worth comparing
(e.g. DoubleAndAdd, NAFs, ...)

Thank you for listening! Questions?

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 17 / 17

Recap & further directions

By modifying projective scaling factors in x-only arithmetic on elliptic curves,
Montgomery ladders give pairings as immediate by-products.

⇝ implementation quirks: simple, easily constant-time, practical.
⇝ speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

In specific contexts, alternative computations to cLadder are worth comparing
(e.g. DoubleAndAdd, NAFs, ...)

Thank you for listening! Questions?

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 17 / 17

Recap & further directions

By modifying projective scaling factors in x-only arithmetic on elliptic curves,
Montgomery ladders give pairings as immediate by-products.

⇝ implementation quirks: simple, easily constant-time, practical.
⇝ speedups in isogeny-based cryptography.

The theory of cubical arithmetic applies much more generally:

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already implemented in AVIsogenies (Magma), libraries in Sagemath

In specific contexts, alternative computations to cLadder are worth comparing
(e.g. DoubleAndAdd, NAFs, ...)

Thank you for listening! Questions?

Alessandro Sferlazza (TUM) Ladders compute pairings 03/07/2025 17 / 17

Appendix: divisors

Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

The divisors of degree 0 on E form a group:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Given a rational function f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P)

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P)− (0E)]

(← back to Miller’s algo)

Appendix: divisors

Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

The divisors of degree 0 on E form a group:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Given a rational function f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P)

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P)− (0E)]

(← back to Miller’s algo)

Appendix: divisors

Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

The divisors of degree 0 on E form a group:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Given a rational function f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P)

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P)− (0E)]

(← back to Miller’s algo)

Appendix: divisors

Let E/Fq be an elliptic curve. A divisor on E is a formal sum

D = n1 · (P1) + . . .+ nr · (Pr) ni ∈ Z, Pi ∈ E

The divisors of degree 0 on E form a group:

Div0(E) = {D = n1(P1) + . . .+ nr(Pr) | n1 + . . .+ nr = 0}.

Given a rational function f ∈ Fq(E), we attach to it a principal divisor

div f =
∑
P∈E

ordP (f) · (P)

where ordP (f) is the multiplicity of P as a zero of f if > 0, and as pole of f if < 0

Any E elliptic curve is isomorphic to a quotient of Div0(E):

E
∼−−−→ Pic0(E) = Div0(E)/{principal divisors}

P 7−→ [(P)− (0E)]

(← back to Miller’s algo)

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′P
(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Cubical arithmetic in different models

cDBL cADD

Montgomery 3M 2S 3M 2S
Theta 3M 2S 3M 3S

Weierstrass 5M 4S 8M 2S

Appendix: Miller’s algorithm

A Miller function is fℓ,P ∈ k(E) with divisor

div fℓ,P = (ℓ− 1) (0E) + ([ℓ]P)− ℓ (−P) ∈ Div0(E)

These rational functions satisfy

fi+j,P = fi,P · fj,P · (l[i]P,[j]P /v[j]P)
with lR,S = line through R and S, and vS = vertical line through S.

Miller’s algorithm: compute fℓ,P (Q) by:

Fix an addition chain (1, 2, . . . , ℓ)

Step by step compute (P, f1,P (Q)), ([2]P, f2,P (Q)), . . . , ([ℓ]P, fℓ,P (Q))

[i]P

[j]P

[i+j]P

(← back to monodromy)

Appendix: x-only Montgomery arithmetic

xDBL :


Q = (XP + ZP)

2

R = (XP − ZP)
2

S = Q−R

[2]P = (QR : S(R+ a+2
4 S))

xADD :


U = (XP − ZP)(XQ + ZQ)

V = (XP + ZP)(XQ − ZQ)

XP+Q = ZP−Q · (U + V)2

ZP+Q = XP−Q · (U − V)2

(← go back)

Appendix: (differential) addition chains

Fix ℓ ∈ Z>0 a target scalar.
An addition chain is a sequence of integers s = (n0 = 0, n1 = 1, n2, n4, . . . , nk = ℓ) such that

n ∈ s =⇒ ∃ni, nj ∈ s : n = ni + nj

Example: an addition chain for ℓ = 9 is s9 = (0, 1, 2, 3, 5, 8, 9)

A differential addition chain is a sequence of integers s = (n0 = 0, n1 = 1, n2, n4, . . . , nk = ℓ)
such that

n ∈ s =⇒ ∃ni, nj ∈ s : n = ni + nj and ni − nj ∈ s

Example: s9 is not a differential addition chain for ℓ = 9:
we have 9 = 8 + 1, but 8− 1 is not in the sequence.

Instead this one works: s′9 = (0, 1, 2, 3, 5, 7, 9)

(← back to Miller’s algo)

